Codeforces 33B. String Problem(Floyd最短路)

题目链接:http://codeforces.com/contest/33/problem/B


Boy Valera likes strings. And even more he likes them, when they are identical. That's why in his spare time Valera plays the following game. He takes any two strings, consisting of lower case Latin letters, and tries to make them identical. According to the game rules, with each move Valera can change one arbitrary character Ai in one of the strings into arbitrary character Bi, but he has to pay for every move a particular sum of money, equal to Wi. He is allowed to make as many moves as he needs. Since Valera is a very economical boy and never wastes his money, he asked you, an experienced programmer, to help him answer the question: what minimum amount of money should Valera have to get identical strings.

Input

The first input line contains two initial non-empty strings s and t, consisting of lower case Latin letters. The length of each string doesn't exceed 105. The following line contains integer n (0 ≤ n ≤ 500) — amount of possible changings. Then follow n lines, each containing characters Ai and Bi (lower case Latin letters) and integer Wi (0 ≤ Wi ≤ 100), saying that it's allowed to change character Ai into character Bi in any of the strings and spend sum of money Wi.

Output

If the answer exists, output the answer to the problem, and the resulting string. Otherwise output -1 in the only line. If the answer is not unique, output any.

Examples
input
Copy
uayd
uxxd
3
a x 8
x y 13
d c 3
output
Copy
21
uxyd
input
Copy
a
b
3
a b 2
a b 3
b a 5
output
Copy
2
b
input
Copy
abc
ab
6
a b 4
a b 7
b a 8
c b 11
c a 3
a c 0
output
Copy
-1


题目大意:

给你a,b两个字符串,n中变化,接下来n行,每行表示从字符1到字符2要花费代价val,问将a,b变成一样所需花费代价最小值,不能输出-1。


思路:将26个字符之间的变化代价用Floyd跑出来,求最小即可。

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<map>

using namespace std;

#define FOU(i,x,y) for(int i=x;i<=y;i++)
#define FOD(i,x,y) for(int i=x;i>=y;i--)
#define MEM(a,val) memset(a,val,sizeof(a))
#define PI acos(-1.0)

const double EXP = 1e-9;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const ll MINF = 0x3f3f3f3f3f3f3f3f;
const double DINF = 0xffffffffffff;
const int mod = 1e9+7;
const int N = 1e5+5;

char a[N],b[N],c[N];
int change[30][30];

int mp[30][30];
int d[30][30];

void Floyd()
{
    int n=25;
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++)
            d[i][j]=mp[i][j];

    for(int k=0;k<=n;k++)  //枚举以k为中间点的所有点的最短路
        for(int i=0;i<=n;i++)
            for(int j=0;j<=n;j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
//    for(int i=0;i<26;i++)
//    {
//        for(int j=0;j<26;j++)
//        {
//            printf("%c->%c=%d\n",'a'+i,'a'+j,d[i][j]);
//        }
//    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    std::ios::sync_with_stdio(false);
    int n,val;
    char x,y;
    scanf(" %s %s",a,b);
    scanf("%d",&n);
    for(int i=0;i<30;i++)
        for(int j=0;j<30;j++)
        {
            if(i==j)
                mp[i][j]=0;
            else
                mp[i][j]=INF;
        }
    for(int i=1;i<=n;i++)
    {
        scanf(" %c %c %d",&x,&y,&val);
        int t1=x-'a';
        int t2=y-'a';
        mp[t1][t2]=min(mp[t1][t2],val);
    }
    Floyd();
    int len1=strlen(a);
    int len2=strlen(b);
    if(len1!=len2)
    {
        printf("-1\n");
        return 0;
    }
    bool flag = false;
    int ans=0;
    for(int i=0;i<len1;i++)
    {
        int minn=INF;
        int t1=a[i]-'a';
        int t2=b[i]-'a';
        for(int j=0;j<26;j++)
        {
            int x1 = d[t1][j];
            int x2 = d[t2][j];
            //printf("%c\n",'a'+j);
            //printf("x1=%d\n",x1);
            //printf("x2=%d\n",x2);
            if(x1!=INF&&x2!=INF&&minn>x1+x2)
            {
                minn=x1+x2;
                c[i]='a'+j;
            }
        }
        //printf("%d=%d\n",i,minn);
        if(minn==INF)
        {
            flag=true;
            break;
        }
        ans+=minn;
    }
    if(flag)
        printf("-1\n");
    else
    {
        c[len1]='\0';
        printf("%d\n",ans);
        printf("%s\n",c);
    }
    return 0;
}

### Codeforces Div.2 比赛难度介绍 Codeforces Div.2 比赛主要面向的是具有基础编程技能到中级水平的选手。这类比赛通常吸引了大量来自全球不同背景的参赛者,包括大学生、高中生以及一些专业人士。 #### 参加资格 为了参加 Div.2 比赛,选手的评级应不超过 2099 分[^1]。这意味着该级别的竞赛适合那些已经掌握了一定算法知识并能熟练运用至少一种编程语言的人群参与挑战。 #### 题目设置 每场 Div.2 比赛一般会提供五至七道题目,在某些特殊情况下可能会更多或更少。这些题目按照预计解决难度递增排列: - **简单题(A, B 类型)**: 主要测试基本的数据结构操作和常见算法的应用能力;例如数组处理、字符串匹配等。 - **中等偏难题(C, D 类型)**: 开始涉及较为复杂的逻辑推理能力和特定领域内的高级技巧;比如图论中的短路径计算或是动态规划入门应用实例。 - **高难度题(E及以上类型)**: 对于这些问题,则更加侧重考察深入理解复杂概念的能力,并能够灵活组合多种方法来解决问题;这往往需要较强的创造力与丰富的实践经验支持。 对于新手来说,建议先专注于理解和练习前几类较容易的问题,随着经验积累和技术提升再逐步尝试更高层次的任务。 ```cpp // 示例代码展示如何判断一个数是否为偶数 #include <iostream> using namespace std; bool is_even(int num){ return num % 2 == 0; } int main(){ int number = 4; // 测试数据 if(is_even(number)){ cout << "The given number is even."; }else{ cout << "The given number is odd."; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值