华为OD机考2025B卷 - 生成哈夫曼树(Java & Python& JS & C++ & C )

最新华为OD机试

真题目录:点击查看目录
华为OD面试真题精选:点击立即查看

2025华为od 机试2025B卷-华为机考OD2025年B卷

题目描述

给定长度为 n nn 的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于 1 11 。请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。

为了保证输出的二叉树中序遍历结果统一,增加以下限制:又树节点中,左节点权值小于等于右节点权值,根节点权值为左右节点权值之和。当左右节点权值相同时,左子树高度高度小于等于右子树。

注意: 所有用例保证有效,并能生成哈夫曼树提醒:哈夫曼树又称最优二叉树,是一种带权路径长度最短的一叉树。

所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为 0 00 层,叶结点到根结点的路径长度为叶结点的层数)

输入描述

例如:由叶子节点 5 15 40 30 10 生成的最优二叉树如下图所示,该树的最短带权路径长度为 40 * 1 + 30 * 2 +5 * 4 + 10 * 4 = 205 。
image-20231218210700458

输出描述

输出一个哈夫曼的中序遍历数组,数值间以空格分隔

示例1

输入

5
5 15 40 30 10

输出

40 100 30 60 15 30 5 15 10

解题思路

模拟计算

请结合上图阅读! 计算过程如下:

  1. 输入的5个数是:5, 15, 40, 30, 10。
  2. 将这些数作为节点值创建节点,并将节点添加到优先队列中。
  3. 构建哈夫曼树:
    • 弹出两个最小的节点,值为5和10,合并为一个新节点值为15,将新节点添加回优先队列。
    • 弹出两个最小的节点,值为15(新合成的)和15(原始的),合并为一个新节点值为30,将新节点添加回优先队列。
    • 弹出两个最小的节点,值为30(新合成的)和30(原始的),合并为一个新节点值为60,将新节点添加回优先队列。
    • 弹出两个最小的节点,值为40和60,合并为一个新节点值为100,将新节点添加回优先队列。
    • 此时队列中只剩下一个节点,这就是树的根节点,值为100。
  4. 对哈夫曼树进行中序遍历:
    • 访问左子树,值为40,它是一个叶子节点,输出40。
    • 访问根节点,值为100,输出100。
    • 访问右子树,值为60,它不是叶子节点,继续中序遍历:
      • 访问左子树,值为30,它不是叶
### 华为OD机考 2025B 数字游戏 Java 编程题 解决方案 在华为OD机考 2025B中,数字游戏相关的编程题目通常涉及算法设计、数据结构应用以及逻辑推理。以下是一个可能的数字游戏问题及其解决方案。 #### 问题描述 假设有一个数字游戏,玩家需要从一个整数数组中选择若干个数字,使得这些数字的和等于目标值 `target`。要求输出所有可能的组合。如果不存在这样的组合,则返回空列表。 **输入:** - 一个整数数组 `nums`。 - 一个整数目标值 `target`。 **输出:** - 所有可能的组合列表,每个组合是一个子数组。 **示例:** ```plaintext 输入: nums = [2, 3, 6, 7], target = 7 输出: [[7], [2, 2, 3]] ``` #### 解决方案 以下是使用回溯法(Backtracking)解决该问题的 Java 实现: ```java import java.util.ArrayList; import java.util.List; public class NumberGame { public static List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<>(); if (candidates == null || candidates.length == 0) return result; // 排序以优化剪枝 java.util.Arrays.sort(candidates); backtrack(result, new ArrayList<>(), candidates, target, 0); return result; } private static void backtrack(List<List<Integer>> result, List<Integer> tempList, int[] candidates, int remain, int start) { if (remain < 0) return; // 超过目标值,直接返回 if (remain == 0) { // 找到一个组合 result.add(new ArrayList<>(tempList)); return; } for (int i = start; i < candidates.length; i++) { tempList.add(candidates[i]); backtrack(result, tempList, candidates, remain - candidates[i], i); // 不移动起点,允许重复使用 tempList.remove(tempList.size() - 1); // 回溯 } } public static void main(String[] args) { int[] nums = {2, 3, 6, 7}; int target = 7; List<List<Integer>> result = combinationSum(nums, target); System.out.println("结果: " + result); } } ``` #### 代码说明 1. **输入排序**:为了优化剪枝操作,首先对输入数组进行排序[^1]。 2. **回溯函数**:通过递归实现回溯,每次尝试将当前数字加入临时列表,并递归调用自身以寻找剩余目标值的组合。 3. **剪枝条件**:当剩余目标值小于 0 时,停止进一步递归;当剩余目标值等于 0 时,保存当前组合并返回。 4. **重复使用元素**:允许同一个数字被多次使用,因此递归调用时传入的起点索引不增加。 #### 时间复杂度与空间复杂度 - **时间复杂度**:最坏情况下为 \(O(2^n)\),其中 \(n\) 是数组长度,因为每个数字都有选或不选两种状态。 - **空间复杂度**:取决于递归深度,最坏情况下为 \(O(n)\)[^2]。 #### 测试结果 运行上述代码,对于输入 `nums = [2, 3, 6, 7]` 和 `target = 7`,输出结果为: ```plaintext 结果: [[2, 2, 3], [7]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值