目录
6. 哈希表的模拟实现以及unorder_set和unorder_map的封装
1. 哈希概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即 O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立 一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
插入元素时: 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素时:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
2. 哈希冲突
在上面的例子中hash(4) = 4%10 = 4,hash(14) = 14%10 = 4,hash(4) == hash(14)。
不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”
3. 哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:
1. 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
2. 哈希函数计算出来的地址能均匀分布在整个空间中
3. 哈希函数应该比较简单
常见哈希函数
1.. 直接定址法
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀 缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况
2. 除留余数法
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数, 按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
4. 哈希冲突解决
解决哈希冲突两种常见的方法是:闭散列和开散列
4.1 闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以把key存放到冲突位置中的 “下一个” 空位置中去。
1. 线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
通过哈希函数获取待插入元素在哈希表中的位置
如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素
删除:
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,14查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
// 哈希表每个空间给个标记 EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
扩容:散列表的载荷因子:e = 填入表中的元素个数 / 散列表的长度
e的值越大,发生哈希冲突的可能性越大
线性探测优点:实现非常简单
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。
2. 二次探测:从发生冲突的位置开始,向后探测,但不是依次探测,而是每次向后找i^2(i = 1,2,3……)位置
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任 何一个位置都不会被探查两次。
闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
闭散列的实现:
enum state
{
EMPTY,
EXITE,
DELETE
};
template<class K, class V>
struct Hash_Ndoe
{
//Hash_Ndoe(const pair<K, V>& kv)
// :_state(EMPTY),
// _kv(kv)
//{}
pair<K, V> _kv;
state _state = EMPTY;
};
template<class K, class V>
class Hash
{
typedef Hash_Ndoe<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
//判断空间是否足够
size_t _v_size = _v.size();
if (_v_size == 0)
{
_v.resize(10);
}
else if (_n * 10 / _v_size > 7)
{
size_t newsize = _v_size * 2;
Hash<K, V> newhash;
newhash._v.resize(newsize);
for (int i = 0; i < _v_size; ++i)
{
if (_v[i]._state == EXITE)
newhash.Insert(_v[i]._kv);
}
_v.swap(newhash._v);
}
_v_size = _v.size();
//找到对应位置
size_t