C语言部分复习笔记

声明:这部分内容只提供大致面试考察的重点

目录

1. 指针和数组

数组指针 和 指针数组

arr和&arr的区别

函数指针

const和指针

sizeof和指针,数组/strlen和指针,数组

2. 库函数的模拟实现

memcpy

memmove

strstr

memset/strcmp

3. 自定义类型

内存对齐规则

联合体

4. 整形的存储规则

原码/反码/补码

大小端

5. 编译链接

编译链接过程


1. 指针和数组

数组指针 和 指针数组

 int* p1[10]; // 指针数组
 int (*p2)[10]; // 数组指针

因为 [] 的优先级比 * 高,p先和 [] 结合说明p是一个数组,p先和*结合说明p是一个指针

括号保证p先和*结合,说明p是一个指针变量,然后指着指向的是一个大小为10个整型的数组。所以p是一个 指针,指向一个数组,叫数组指针。

arr和&arr的区别

arr代表数组首元素的地址,&arr代表整个数组的地址

 void test(int(*arr)[10], int size) // 这里arr也是整个数组的数组指针
 {
     for (int i = 0; i < size; ++i)
     {
         cout << ((int*)arr)[i] << " ";
     }
     cout << endl;
 }
 ​
 int main()
 {
     int arr[10] = { 0 };
     int(*p)[10] = &arr; // 数组指针需要指整个数组
     test(p, 10);
     return 0;
 }

二维数组传参

 
void test(int arr[3][5])//ok?
 {}
 void test(int arr[][])//ok? X
 {}
 void test(int arr[][5])//ok?
 {}
 // 总结:二维数组传参,函数形参的设计只能省略第一个[]的数字。
 // 因为对一个二维数组,可以不知道有多少行,但是必须知道一行多少元素。这样才方便运算。
 void test(int* arr)//ok?X
 {}
 void test(int* arr[5])//ok?
 {}
 void test(int(*arr)[5])//ok?arr是指向一个大小为5的一维数组
 {}
 void test(int** arr)//ok?
 {}
 int main()
 {
     int arr[3][5] = { 0 };
     test(arr);
 }

函数指针

保存函数的地址:函数指针

 #include <stdio.h>
 void test()
 {}
 ​
 int main()
 {
     printf("%p\n", test);
     printf("%p\n", &test); // 一样
     cout << typeid(test).name() << endl; // void __cdecl(void) 函数名
     cout << typeid(&test).name() << endl; // void (__cdecl*)(void) 函数指针
     void(*p1)(void) = test;
     void(*p2)(void) = &test; // 一样的
     return 0;
 }

函数指针数组

 typedef void(*handler)(void);
 ​
 int main()
 {
     handler arr[12] = { 0 };
     void(*arr1[12])(void)  = { 0 };
 }

const和指针

const修饰的指针变量:

  1. const位于*前的,表示指针指向的对象内容无法修改,p指向的空间内容(指向对象的内容)无法修改

  2. const位于*后面的,表示指针指向的位置无法修改,p的内容(保存的对象地址)无法修改

     const int* p = nullptr;
     int const* p = nullptr;
     int* const p = nullptr;

sizeof和指针,数组/strlen和指针,数组

sizeof是根据对象的类型判断大小,但是有一个特殊处理就是数组名,sizeof(数组名)

  1. sizeof(数组名),这里的数组名表示整个数组,计算的是整个数组的大小

  2. &数组名,这里的数组名表示整个数组,取出的是整个数组的地址

  3. 除此之外所有的数组名都表示首元素的地址

  4. 但是参数数组也是一个特殊的存在,当数组作为参数进行传递的时候,数组其实退化成了指针

 //一维数组
 int a[] = {1,2,3,4};
 printf("%d\n",sizeof(a));       // 16
 printf("%d\n",sizeof(a+0));     // 4/8
 printf("%d\n",sizeof(*a));      // 4 
 printf("%d\n",sizeof(a+1));     // 4/8
 printf("%d\n",sizeof(a[1]));    // 4
 printf("%d\
内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值