Reinforcement Learning Exercise 6.2

在随机行走示例的左图中,首次步进仅改变V(A)的状态值,揭示了第一集中发生的事件。由于所有状态值初始化为0.5,在首次集中的中间步骤不会改变状态值。当到达终止状态A时,V(A)更新为0.45,变化量为0.05。

Exercise 6.3 From the results shown in the left graph of the random walk example it appears that the first episode results in a change in only V(A)V (A)V(A). What does this tell you about what happened on the first episode? Why was only the estimate for this one state changed? By exactly how much was it changed?

As shown in the left graph of the random walk example, all the state values are initialized to 0.5, so the intermediate steps will not change the state values in the first episode. For example, from B to A, there is:
V(B)←V(B)+α[0+γV(A)−V(B)]∴V(B)=0.5+0.1[0+1⋅0.5−0.5]=0.5 V(B) \leftarrow V(B) + \alpha[ 0 + \gamma V(A) - V(B)] \\ \therefore V(B) = 0.5 +0.1[0 +1\cdot 0.5 -0.5]=0.5 V(B)V(B)+α[0+γV(A)V(B)]V(B)=0.5+0.1[0+10.50.5]=0.5
Also, there is only state A changed in episode 1 shown in the left graph of the random walk example. So, the episode 1 terminate in left terminal of A, otherwise, state E should have been changed. Then, we can calculate how much the value of state A changed:
V(A)←V(A)+α[0+γV(terminal)−V(A)]∴V(A)=0.5+0.1[0+1⋅0−0.5]=0.45 V(A) \leftarrow V(A) + \alpha[ 0 + \gamma V(terminal) - V(A)] \\ \therefore V(A) = 0.5 +0.1[0 +1\cdot 0 -0.5]=0.45 V(A)V(A)+α[0+γV(terminal)V(A)]V(A)=0.5+0.1[0+100.5]=0.45
The changed amount is 0.05.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值