Reinforcement Learning Exercise 4.7

本文档介绍如何使用政策迭代解决强化学习中的Jack租车问题的一个变种。问题更新为Jack的一名员工可以免费将一辆车从第一地点运送到第二地点,但每多一辆车需要额外支付2美元。同时,每个地点的停车位有限,超过10辆车需支付4美元的额外停车费。通过修改原租车问题的代码,实现新的成本函数,从而适应新的规则。运行修改后的代码,得到了与原问题不同的结果。

Exercise 4.7 (programming) Write a program for policy iteration and re-solve Jack’s car rental problem with the following changes. One of Jack’s employees at the first location rides a bus home each night and lives near the second location. She is happy to shuttle one car to the second location for free. Each additional car still costs $2, as do all cars moved in the other direction. In addition, Jack has limited parking space at each location.If more than 10 cars are kept overnight at a location (after any moving of cars), then an additional cost of $4 must be incurred to use a second parking lot (independent of how many cars are kept there). These sorts of nonlinearities and arbitrary dynamics often occur in real problems and cannot easily be handled by optimization methods other than dynamic programming. To check your program, first replicate the results given for the original problem.

First we can give out the code of Jack’s car rental problem, then just a few modification is needed to solve this problem.
Code of Jack’s car rental problem:

#[car_rental.py]
#==================================================================
# Python3
# Copyright
# 2019 Ye Xiang (xiang_ye@outlook.com)
#==================================================================

import scipy.stats as sci_stats
import numpy as np
import matplotlib as mpltlib
import matplotlib.pyplot as mtplt
import seaborn as sbn
import math

class car_rental:
    def __init__(self):
        self.__init__all()

    def __init__all(self):
        self._max_car_num = 20 # maximum car number for each location
        self._gamma = 0.9      # discount rate
        self.__max_transfer_car_num = 5
        self.__accuracy = 0.01
        self._transfer_cost_per_car = 2
        self.__rental_credit_per_car = 10

        #Initialize policy and V(s) as zeros in 21X21 table, becauseof no more than 20 cars for each loaction
        self.__Vs = np.zeros((self._max_car_num + 1,self._max_car_num + 1))
        self.__policy = np.zeros(self.__Vs.shape, dtype = np.int32)

        #Record policy changes in iteration
        self.__history_policy = []

        self._requested_prob1 = self.__init_probabilities(self._max_car_num + 1, 3)
        self._returned_prob1  = self.__init_probabilities(self._max_car_num + 1, 3)
        self._requested_prob2 = self.__init_probabilities(self._max_car_num + 1, 4)
        self._returned_prob2  = self.__init_probabilities(self._max_car_num + 1, 2)

        #The probability that the request car number >= the car number in the morning.
        self._req_over_boundary_prob1 = self.__init_over_boundary_prob(self._requested_prob1)
        self._req_over_boundary_prob2 = self.__init_over_boundary_prob(self._requested_prob2)
        #The probability that the returned car number makes the car number >= the maximum car num in the evening.
        self._ret_over_boundary_prob1 = self.__init_over_boundary_prob(self._returned_prob1)
        self._ret_over_boundary_prob2 = self.__init_over_boundary_prob(self._returned_prob2)

    def __init_probabilities(self, array_size, poisson_lambda):
        arr = np.zeros(array_size)
        for i in range(0, array_size):
            arr[i] = sci_stats.poisson.pmf(k = i, mu = poisson_lambda)
        return arr

    def __init_over_boundary_prob(self, prob_in_boundary):
        # For example, when requested car number is 3, the car number in morning is 2, the self._req_over_boundary_prob1[2] stands for 
        # all the request car number that makes the remain car number is 0, include requested car number is 2, 3, 4 & ...
        # so self._req_over_boundary_prob1[2] = 1 - self._requseted_prob1[0]- self._requseted_prob1[1]
        prob = np.zeros(len(prob_in_boundary) + 1)
        tmp = 0
        prob[0] = 1
        for i in range(1, len(prob_in_boundary) + 1):
            tmp += prob_in_boundary[i - 1]
            prob[i] = 1 - tmp
        return prob

    def _get_rental_reward(self, request_num, car_num):
        return min(self._max_car_num, min(request_num, car_num)) * self.__rental_credit_per_car

    def _get_action_cost(self, action):
        return abs(action) * self._transfer_cost_per_car
    

    def _calculate_Vs_by_policy(self, Vs,car_num1_in_evening, car_num2_in_evening, action):
        tmp_vs = 0.0
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值