问题及代码:
/*
*Copyright (c)2015,烟台大学计算机与控制工程学院
*All rights reserved.
*文件名称: 点、圆的关系 .cpp
*作 者:白云飞
*完成日期:2015年5月23日
*版 本 号:v1.0
*
*问题描述:(1)先建立一个Point(点)类,包含数据成员x,y(坐标点);
(2)以Point为基类,派生出一个Circle(圆)类,增加数据成员(半径),基类的成员表示圆心;
(3)编写上述两类中的构造、析构函数及必要运算符重载函数(本项目主要是输入输出);
(4)与圆心相连的直线:给定一点p,其与圆心相连成的直线,会和圆有两个交点,如图。在上面定义的Point(点)类和Circle(圆)类基础上,设计一种方案,输出这两点的坐标。
*程序输入:坐标
*程序输出:圆与直线的交点坐标
*/
#include <iostream>
#include<cmath>
using namespace std;
class Circle;
class Point
{
protected:
double x;
double y;
public:
Point(double a=0,double b=0):x(a),y(b) {}
friend ostream & operator<<(ostream &,const Point &);
friend void intersection_point(Point &p, Circle &c, Point &p1,Point &p2 );
};
ostream & operator<<(ostream &output,const Point &p)
{
output<<"["<<p.x<<","<<p.y<<"]";
return output;
}
class Circle:public Point
{
protected:
double radius;
public:
Circle(double a=0,double b=0,double r=0):Point(a,b),radius(r) {}
friend ostream &operator<<(ostream &,const Circle &);
friend void intersection_point(Point &p, Circle &c, Point &p1,Point &p2 );
};
ostream &operator<<(ostream &output,const Circle &c)
{
output<<"(圆心=["<<c.x<<", "<<c.y<<"], r="<<c.radius<<")";
return output;
}
void intersection_point(Point &p, Circle &c, Point &p1,Point &p2 )
{
p1.x=(c.x+sqrt(c.radius*c.radius/(1+((c.y-p.y)/(c.x-p.x))*((c.y-p.y)/(c.x-p.x)))));
p2.x=(c.x-sqrt(c.radius*c.radius/(1+((c.y-p.y)/(c.x-p.x))*((c.y-p.y)/(c.x-p.x)))));
p1.y=(p.y+(p1.x -p.x)*(c.y-p.y)/(c.x-p.x));
p2.y=(p.y+(p2.x -p.x)*(c.y-p.y)/(c.x-p.x));
}
int main( )
{
Circle c(2,2,2);
Point p(0,0),p1,p2;
intersection_point(p,c, p1, p2);
cout<<"p点:"<<p<<endl;
cout<<"圆c:"<<c<<endl;
cout<<"p点与圆c圆心的连线交圆c于p1与p2两点"<<endl;
cout<<"p1:"<<p1<<endl;
cout<<"p2:"<<p2<<endl;
return 0;
}
运行结果:
学习心得:
计算交点的方程已知,不过用起来还是和想的不一样,总有问题,看到贺老的,又学到一招,简便。