阅读分享:Enriching BERT with Knowledge Graph Embeddings for Document Classification

Enriching BERT with Knowledge Graph Embeddings for Document Classification
  • https://github.com/malteos/pytorch-bert-document-classification

子任务A:对一本书进行八分类;
子任务B:第二层93个和第三层242个标签(总共343个标签)进行分类。

Arthitecture:
Model Arthitecture

  • Title
  • Text:A short descriptive text (blurb) with an average length of 95 words.
  • Metadata:
    • Number of authors.
    • Academic title (Dr. or Prof.), if found in author names (0 or 1).
    • Number of words in title.
    • Number of words in blurb.
    • Length of longest word in blurb.
    • Mean word length in blurb.
    • Median word length in blurb.
    • Age in years after publication date.
    • Probability of
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值