知识图谱是揭示实体间关系的语义网络,构建包括九大核心技术:知识抽取、实体抽取、关系抽取、属性抽取、实体对齐、知识表示、知识融合、知识更新和知识推理。这些技术从异构数据源提取实体和关系,通过RDF三元组等形式表示知识,融合不同来源信息,解决冲突,形成高质量知识库,并通过推理挖掘隐含知识。
本质上,知识图谱是一种揭示实体之间关系的语义网络,是对现实世界事物及相互关系的形式化描述。

1、知识抽取
从异构数据源中获取候选知识单元,知识抽取技术将自动从结构化、半结构化和非结构化数据中抽取实体、关系、属性等知识要素,形成高质量的事实表达,为上层模式层的构建奠定基础。
2、实体抽取
也称为命名实体识别(named entity recognition,NER),指从原始语料中自动识别出命名实体。实体是知识图谱中的最基本元素,其抽取的完整性、准确率、召回率等将直接影响到知识库的质量。实体抽取是知识抽取中最为基础与关键的一步。
3、关系抽取
关系抽取(Relation Extraction,RE)是知识抽取的重要子任务之一,主要目的是从文本中识别实体并抽取实体之间的语义关系,形成网状的知识结构。
4、属性抽取
从不同信息源中采集特性实体的属性信息。例如对某支股票,可以从网络的公开信息中得到其公司名称、上市日期、股东、营收等信息。属性抽取技术能够从各个数据源中汇集属性信息,更完整的表述实体属性。
5、实体对齐
实体对齐(entity alignment)也称为实体匹配(entity matching)或实体解析(entity resolution),主要是用于消除异构数据中实体冲突、指向不明等不一致性问题。实体对齐将来自多个来源的关于同一个实体或概念的描述信息融合起来得到唯一表示。如唐三藏、玄奘、金蝉子,可以融合成唯一表示。
6、知识表示
RDF三元组是表示知识图谱的一种常见表示形式,以(subject、predicate、object)的三元组形式就足以清晰的表示实体之间的许多复杂联系。如:(达芬奇,作品,蒙娜丽莎)、(姚明、徒弟、李秋平)等。
7、知识融合
由于知识图谱中的知识来源广泛,存在知识质量良莠不齐、冗余和错误的问题,通过知识融合,使来自不同知识源的知识在统一框架规范下进行异构数据整合、消歧、加工、推理验证、更新。达到数据、信息、方法、经验以及人的思想的融合,形成高质量的知识库。
8、知识更新
根据知识图谱的逻辑结构,其更新包括数据层的更新与模式层的更新。
数据层的更新是指实体元素的更新,包括实体的增加、修改、删除、以及实体的基本信息和属性值。数据层更新通常以自动的方式完成。
模式层的更新是指本体中元素的更新,包含概念的增加、修改、删除、概念属性的更新以及概念之间关系的更新等。模式层更新多数情况是靠人工干预完成的。人工定义规则、处理冲突,实施难度较大。
9、知识推理
知识推理是在已有的知识库上进一步挖掘隐含知识,从而丰富、扩展知识库。知识推理的对象可以是实体、实体的属性、实体间的关系、本体库中概念的层次结构等。例如(姚明,配偶,叶莉),(姚明、女儿,姚沁蕾),可以推测出(姚沁蕾,母亲,叶莉)。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)

👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。


👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

👉4.大模型实战项目&项目源码👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)

👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)

👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

为什么分享这些资料?
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈
1867

被折叠的 条评论
为什么被折叠?



