“对,裁掉几千名员工。”
“好的,头儿。”
“很好,那么这个人工智能可以做那些前雇员能做的一切事情?”
“不,不全是。”
“等等,什么?”
“你刚刚裁掉的几百人都是硬件工程师,需要他们来购买、安装和维护人工智能服务器。还有大约一百人是人工智能训练专家,他们需要建立模型并应用 Deep Q 学习方法来优化工作流程。另外 50 名是高端程序员,需要他们将一切整合在一起。现在,我们只有一堆盒装服务器放在装卸区。”
“好吧,那就把他们带回来!”
“对不起,不行。他们已经成立了自己的公司,收费是我们直接雇佣他们的五倍。”
“这么说,这将使我们的预算超支 5 亿?”
“根据 ChatGPT 的说法,是的。”
——一位网友 @NoneSuch 用对话解说 IBM 自动化计划的情况。
“IBM 计划用 AI 取代数千个职位,但目前来看其实质更像是将大量工作外包给印度,同时牺牲掉宝贵的组织能力。”(去年 5 月,IBM 宣布将用 AI 取代大约 7800 个工作岗位。)就在 IBM 曝出最新一轮裁员消息之后,有分析人士做出如上判断。这一观点迅速引起了三位 IBM 员工的强烈共鸣,并表达了他们对于裁员的看法。
由于这些员工要求隐去姓名,在下文中,我们将分别使用 Alex、Blake 和 Casey 作为化名指代他们三位。唯一能够透露的是,他们曾经或者正受雇于多个地点的业务部门,担任高级技术岗位并且了解公司内情——因此基本可以消除观察视角狭窄、观点片面的可能性。
“将工作外包给 AI 是在胡扯”
“我总爱拿 IBM 开玩笑,比如说‘IBM 压根不想让人们给他干活’。每隔六个月左右,公司就会组织几轮所谓‘资源行动’,也就是 IBM 的裁员代号;或者强迫员工们达成不可能的指标,逼他们选择离职。”Alex 说道。
这与去年 IBM 公司的 CEO Arvind Krishna 公布的“用 AI 取代约 7800 个工作岗位”的计划基本一致。但据这几位消息人士驳斥称,Krishna 的方案根本站不住脚:IBM 所引入的 AI 无法胜任、更遑论取代人类的工作,而不少有能力解决这个问题的人已经被解雇。
Alex 观察到,在过去四年间,IBM 管理层一直在推动自动化和 AI 技术的应用。他这样解释背后的逻辑,“有了 AI 工具为我们编写代码……为什么还要付钱雇用高级员工?毕竟只要用低得多的价码,就能提拔起一个实际上不怎么懂技术和业务的年轻人。另外一条逻辑线是,可以先让经验丰富的程序员编写代码,根据法律规定一切成果都属于公司的知识产权。只要把结果输入到 AI 库当中,大模型就能从中学习,而不再需要原开发者的继续参与。”
但消息人士强调称,事实上,这种情况在 IBM 内部尚未实现。Watsonx(IBM 的生成式 AI 产品)甚至还没有面向员工开放,而且其进度远远落后于 OpenAI 的 ChatGPT。
“整个将工作外包给 AI 的想法都是在胡扯,但不知为什么我们的高管团队就是相信这事能行。事实上,Watsonx 甚至还没有面向员工开放,根本没办法承接并自动化那些毫无意义的任务。其进度远远落后于 OpenAI 和 ChatGPT,甚至可以说连跟上都做不到。”Casey 表示。
Blake 则指出,“WatsonX 比 ChatGPT 落后好几年,其 Web 界面还出了很大的问题,直到 2024 年 7 月才勉强算是可用。整个公司内根本没人实际使用。”他还提到,“理论上讲,Watsonx Code Assistant 已经熟悉 PHP,但实际表现要比 GitHub Copilot 差很多。当然,有总比没有好。CEO 一直恳求开发人员们多加使用。但据我所知也就一、两个人在捧场,绝大多数人根本不感兴趣。”
Blake 还补充道,由于禁止在内部使用来自外部的大语言模型,IBM 的开发人员对其他代码助手、甚至是 ChatGPT 几乎没有实践经验。他认为 IBM 开发人员对于大语言模型的了解可能“远远低于其他大型科技公司的水平”。
据这几位消息人士称,在 IBM Cloud Legacy(以前称为 SoftLayer)项目当中,只有约 1% 的开发人员从事涉及 AI 和大语言模型的产品开发工作。
“大模型还没准备好挑起大梁”
然而,IBM 正通过解雇经验丰富的技术人员,使自己越来越依赖自己尚不真正具备的自动化能力。Blake 认为,IBM 裁撤太多经验丰富的高级员工(特别是薪水丰厚且即将退休的员工)的行为无异于自杀。
因为根据他的经验,进入就业市场的开发人员其实越来越少。“从 2012 年左右,美国高级软件工程师的增长已经陷入停滞。这是真的,地球上还没有其他哪个国家培养新程序员的速度比老程序员群体的速度快。印度和巴西是最后两个增速高于降速的国家,但也已经在 2023 年迎来了新开发者的数量增长。中国的转折点则出现在 2020 年。”
Blake 指出,Stack Overflow 的开发人员调查数据也支持了以下观点:软件开发人员的平均年龄正在上升,具有初级经验(零到四年)的开发人员比例正在下降。这也令开源社区感到担忧。科技企业放缓了招聘速度,并在美国裁员数万人,导致年轻人越来越不想投身于程序开发领域。
“如果没有大语言模型,随着 65 到 80 年出生的从业者开始退休,未来五年内程序员将严重短缺。我原打算把编写代码这件事坚持到生命的终点,但现在我开始频繁使用大语言模型。”Blake 担心,在 IBM,大模型还没有准备好挑起大梁。
Casey 则表示,自动化工具的访问感受相当差劲。他回忆起向其他团队索要脚本的经历,虽然最终还是拿到了需要的代码,但仍然需要在工作流平台 ServiceNow 中手动开启工单。
管理层:不能再失去人才了
Casey 表示,IBM 部分基础设施的运行状态也越来越差。“我们的网络固件代码太过陈旧。我们讨论的东西早在 2020 年就已经过时了,甚至连供应商都停止了支持。高层曾经跟思科、Arista 和瞻博网络开过很多次会,我知道会上具体达成了什么协议,但供应商最终为 EOL 代码提供了全面支持。整个网络基本上就是靠‘胶带’加一点侥幸支撑起来的。”
IBM 也曾尝试通过在印度雇用网络工程外包商来维持运转,但效果并不理想。外包商负责的工作,就是处理最基础的网络维护任务,这样高级工程师就能腾出手来处理更具影响力的项目,比如跨数据中心升级固件。但外包商的表现很差,并在大约 18 个月前被 IBM 解雇。
Casey 提到,“从那时起,上头就没再雇用过任何人”,而且六年以来甚至没有招聘过任何一名驻扎美国的全职工程师。IBM 每年都在继续裁员,即使管理层一直苦苦恳求,“我们真的不能再失去人才了。”
据他们介绍,在美国的上班时间内,在美网络工程人员将减少到每班两到三人,意味着每班员工流失达 33%。请注意,他们负责的是对 IBM 全部全球数据中心的运行状态进行监控和维护。EMEA(中东、非洲与欧洲)及 APAC(亚太地区)团队仍可保持满员状态,至少在网络部门内仍维持每班五到八名员工的配置。
如果 Alex、Blake 和 Casey 所言非虚,那么这种处境下的员工不太可能对雇主还抱有什么积极的期待。而 IBM 的情况似乎更糟糕,因为 Krishna 提出的用 AI 取代人类员工的计划似乎没有产生预期影响。
IBM 方面曾强调,尽管花掉 4 亿美元的员工遣散成本,并裁撤掉了“IBM 全球劳动力中不到 5%”的比例,但该公司仍预计今年年底的“岗位数量水平与计划启动时大致相同”。
在这几位知情人士看来,在 IBM,AI 所做的似乎并不是取代工作岗位,而是让那些靠耍花样拿到录取资格、缺乏技术也没有能力扭转局面的劣质员工占据 IBM 的主体。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
