38、基于GNN、形态学和主动轮廓的车牌检测方法

基于GNN、形态学和主动轮廓的车牌检测方法

1. 背景

车牌检测(LPD)是智能交通系统中的关键技术,已有众多学者提出了不同的方法:
- Duan等人 :提出结合霍夫变换和主动轮廓算法的边界检测方法,有预处理和验证模块,误差率1.8%。
- Kahraman等人 :利用Gabor变换的算法,对图像进行卷积,再通过阈值分割等操作,检测正确率达98%。
- Cano等人 :基于监督分类器的方法,先对图像预处理,再进行特征提取和分类定位。
- Clemens等人 :将AdaBoost算法与Haar特征结合的检测器,还有后处理和跟踪阶段。
- Ho等人 :两阶段方法,先使用Adaboost分类器,再用SIFT描述符和SVM滤波器,检测正确率92%,精度91%。
- Anagnostopoulos等人 :将车牌检测方法分为基于二值图像处理、灰度处理、颜色处理和分类器四类。
- Feng和Shuoben :基于局部形状和颜色的LPR方法,对倾斜车牌处理效果好,准确率96.3%。

2. 提出的方法

该车牌检测系统基于GNN、形态学和主动轮廓,分为三个主要模块:

graph LR
    A[图像] --> B[预处理]
    B --> C[处理]
    C -
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现扩展应用。; 适合人群:具备电力系统基础知识Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值