BZOJ3027 - [CEOI2004]Sweet

本文解析了CEOI2004年竞赛中的甜品问题,通过定义函数f(m)来解决组合数学问题,利用容斥原理和组合数的特性,最终给出了O(n2^n)的时间复杂度解决方案。

Portal

Description

给出\(n(n\leq10),a,b(a,b\leq10^7)\)\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i \in[a,b]\)\(x_i\in[0,c_i]\)的方案数,对\(2004\)取模。

Solution

定义\(f(m)\)表示“将不超过\(m\)个物品放入\(n\)个盒子,且第\(i\)个盒子中的物品数在\([0,c_i]\)范围内”的方案数。原问题就是求\(f(b)-f(a-1)\)。我们进行容斥:

\(0\)个盒子超出范围=至少有\(0\)个盒子超出范围-至少有\(1\)个盒子超出范围+至少有\(2\)个盒子超出范围-...

因为\(n\leq10\),所以我们可以枚举哪些盒子超出范围,共有\(2^n\)种。接下来我们只需求:将不超过\(m\)个物品放入\(n\)个盒子中,对于其中的\(k\)个盒子\(p_1..p_k\),其中的物品数超过范围的方案数。
我们先向这\(k\)个盒子里分别放入\(c+1\)个物品,然后再将剩下的物品放进\(n\)个盒子。将不超过\(m_0\)个物品放进\(n\)个盒子的方案数为\(\binom{m_0+n}{n}\),也就是将\(m_0\)分成\(n+1\)个非负整数的方案数。如果无法让\(k\)个盒子都超出范围,方案数就为\(0\)
不过一个组合数对\(2004\)取模很烦。一般来说,如果要模一个不能表示成\(p^q\)的数,需要用中国剩余定理进行展开再用扩展Lucas定理。\(2004=2^2\times 3\times 167\),分别对\(2^2,3,167\)取模再组合起来。不过因为这道题\(n\)很小,所以有一种简单做法:

证明:\(\dfrac{a}{b} \bmod m= \dfrac{a \bmod bm}{b}\)
\(\dfrac{a}{b} \bmod m=c\),则有\(\dfrac{a}{b} = k\cdot m+c \Rightarrow a=k\cdot bm +bc\)
所以\(a \bmod bm=bc\),即\(c=\dfrac{a \bmod bm}{b}\)

对于本题来说,\(\dbinom{m_0+n}{n} \bmod2004=\dfrac{\prod_{i=0}^{n-1}(m_0+n-i) \bmod (2004\cdot n!)}{n!}\)\(O(n)\)暴力计算即可。

时间复杂度\(O(n2^n)\)

Code

//[CEOI2004]Sweet
#include <cstdio>
typedef long long lint;
lint const H=2004;
int n,a[20];
lint facN;
int C(int a,int b)
{
    lint r=1;
    for(int i=1;i<=b;i++) r=(r*(a-i+1))%(facN*H);
    return r/facN;
}
int dfs(int x,int m,int cnt)
{
    if(m<0) return 0;
    if(x>n) return ((cnt&1?-1:1)*C(m+n,n)+H)%H;
    int r=0;
    r+=dfs(x+1,m-a[x]-1,cnt+1);
    r+=dfs(x+1,m,cnt);
    return r%H;
}
int main()
{
    int x,y; scanf("%d%d%d",&n,&x,&y);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    facN=1; for(int i=1;i<=n;i++) facN=facN*i;
    int ans=dfs(1,y,0)-dfs(1,x-1,0);
    printf("%lld\n",(ans+H+H)%H);
    return 0;
}

P.S.

%%%Icefox,%%%Pickupwin

转载于:https://www.cnblogs.com/VisJiao/p/BZOJ3027.html

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值