Mxnet(四)

总结一些CNN里的经典网络架构:

一、批量归一化(batch normalization)

batch_norm是一种可以使较深的神经网络能容易训练的一种方法。一般放在仿射变换和激活函数之间。

 

𝜙(BN(𝑥))

他的实现代码如下:

import utils as d2l
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import nn

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过autograd来判断当前模式是训练模式还是预测模式
    if not autograd.is_training():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / nd.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(axis=0)
            var = ((X - mean) ** 2).mean(axis=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(axis=(0, 2, 3), keepdims=True)
            var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / nd.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

然后,自定义一个batch_norm层:

class BatchNorm(nn.Block):
    def __init__(self, num_features, num_dims, **kwargs):
        super(BatchNorm, self).__init__(**kwargs)
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = self.params.get('gamma', shape=shape, init=init.One())
        self.beta = self.params.get('beta', shape=shape, init=init.Zero())
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = nd.zeros(shape)
        self.moving_var = nd.zeros(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.context != X.context:
            self.moving_mean = self.moving_mean.copyto(X.context)
            self.moving_var = self.moving_var.copyto(X.context)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma.data(), self.beta.data(), self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

然后,可以构建一个使用批量归一化的LeNet

net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
        BatchNorm(6, num_dims=4),
        nn.Activation('sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Conv2D(16, kernel_size=5),
        BatchNorm(16, num_dims=4),
        nn.Activation('sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Dense(120),
        BatchNorm(120, num_dims=2),
        nn.Activation('sigmoid'),
        nn.Dense(84),
        BatchNorm(84, num_dims=2),
        nn.Activation('sigmoid'),
        nn.Dense(10))

 

二、NIN

LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。

NIN的一个特点是使用1×1卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。

nin_block是一个基础块,它由一个卷积层加两个充当全连接层的1×11×1卷积层串联而成:

import utils as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

def nin_block(num_channels, kernel_size, strides, padding):
    blk = nn.Sequential()
    blk.add(nn.Conv2D(num_channels, kernel_size,
                      strides, padding, activation='relu'),
            nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
            nn.Conv2D(num_channels, kernel_size=1, activation='relu'))
    return blk

NiN是在AlexNet问世不久后提出的。它们的卷积层设定有类似之处。NiN使用卷积窗口形状分别为11×1111×11、5×55×5和3×33×3的卷积层,相应的输出通道数也与AlexNet中的一致。每个NiN块后接一个步幅为2、窗口形状为3×33×3的最大池化层。

除使用NiN块以外,NiN还有一个设计与AlexNet显著不同:NiN去掉了AlexNet最后的3个全连接层,取而代之地,NiN使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。这里的全局平均池化层即窗口形状等于输入空间维形状的平均池化层。NiN的这个设计的好处是可以显著减小模型参数尺寸,从而缓解过拟合。然而,该设计有时会造成获得有效模型的训练时间的增加。

net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),
        nn.MaxPool2D(pool_size=3, strides=2),
        nin_block(256, kernel_size=5, strides=1, padding=2),
        nn.MaxPool2D(pool_size=3, strides=2),
        nin_block(384, kernel_size=3, strides=1, padding=1),
        nn.MaxPool2D(pool_size=3, strides=2), nn.Dropout(0.5),
        # 标签类别数是10
        nin_block(10, kernel_size=3, strides=1, padding=1),
        # 全局平均池化层将窗口形状自动设置成输入的高和宽
        nn.GlobalAvgPool2D(),
        # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
        nn.Flatten())

 

三、GoogleNet

GoogLeNet中的基础卷积块叫作Inception块。Inception块里有4条并行的线路。前3条线路使用窗口大小分别1×1、3×3和5×5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1×1卷积来减少输入通道数,以降低模型复杂度。第四条线路则使用3×3最大池化层,后接1×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。Inception块中可以自定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

import utils as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

class Inception(nn.Block):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
        self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,
                              activation='relu')
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
        self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,
                              activation='relu')
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
        self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')

    def forward(self, x):
        p1 = self.p1_1(x)
        p2 = self.p2_2(self.p2_1(x))
        p3 = self.p3_2(self.p3_1(x))
        p4 = self.p4_2(self.p4_1(x))
        return nd.concat(p1, p2, p3, p4, dim=1)  # 在通道维上连结输出

GoogleNet由五个模块构成,如下:

#第一模块使用一个64通道的 7×7 卷积层。
b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#第二模块使用2个卷积层:首先是64通道的 1×1 卷积层,然后是将通道增大3倍的 3×3 卷积层。它对应Inception块中的第二条线路。
b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
       nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为 64+128+32+32=256 ,其中4条线路的输出通道数比例为 64:128:32:32=2:4:1:1 。其中第二、第三条线路先分别将输入通道数减小至 96/192=1/2 和 16/192=1/12 后,再接上第二层卷积层。第二个Inception块输出通道数增至 128+192+96+64=480 ,每条线路的输出通道数之比为 128:192:96:64=4:6:3:2 。其中第二、第三条线路先分别将输入通道数减小至 128/256=1/2 和 32/256=1/8 。
b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
       Inception(128, (128, 192), (32, 96), 64),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是 192+208+48+64=512 、 160+224+64+64=512 、 128+256+64+64=512 、 112+288+64+64=528 和 256+320+128+128=832 。这些线路的通道数分配和第三模块中的类似,首先是含 3×3 卷积层的第二条线路输出最多通道,其次是仅含 1×1 卷积层的第一条线路,之后是含 5×5 卷积层的第三条线路和含 3×3 最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。
b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
       Inception(160, (112, 224), (24, 64), 64),
       Inception(128, (128, 256), (24, 64), 64),
       Inception(112, (144, 288), (32, 64), 64),
       Inception(256, (160, 320), (32, 128), 128),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#第五模块有输出通道数为 256+320+128+128=832 和 384+384+128+128=1024 的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。
b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
       Inception(384, (192, 384), (48, 128), 128),
       nn.GlobalAvgPool2D())

net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))

 

四、ResNet

ResNet沿用了VGG全3×3卷积层的设计。残差块里首先有2个有相同输出通道数的3×3卷积层。每个卷积层后接一个批量归一化层和ReLU激活函数。然后我们将输入跳过这2个卷积运算后直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

class Residual(nn.Block):  
    def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
        super(Residual, self).__init__(**kwargs)
        self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
                               strides=strides)
        self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
                                   strides=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm()
        self.bn2 = nn.BatchNorm()

    def forward(self, X):
        Y = nd.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        return nd.relu(Y + X)

ResNet模型如下:

#ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的 7×7 卷积层后接步幅为2的 3×3 的最大池化层。不同之处在于ResNet每个卷积层后增加的批量归一化层。

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#GoogLeNet在后面接了4个由Inception块组成的模块。ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。第一个模块的通道数同输入通道数一致。由于之前已经使用了步幅为2的最大池化层,所以无须减小高和宽。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

def resnet_block(num_channels, num_residuals, first_block=False):
    blk = nn.Sequential()
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
        else:
            blk.add(Residual(num_channels))
    return blk

net.add(resnet_block(64, 2, first_block=True),
        resnet_block(128, 2),
        resnet_block(256, 2),
        resnet_block(512, 2))

#最后,与GoogLeNet一样,加入全局平均池化层后接上全连接层输出。
net.add(nn.GlobalAvgPool2D(), nn.Dense(10))

 

五、DesNet

Resnet和DesNet最大的区别在于他们的连接方式,前者是用+连接,后者是用concat方式连接。

DenseNet的主要构建模块是稠密块(dense block)和过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构。他是先做了batch_norm和relu再进行卷积:

def conv_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=3, padding=1))
    return blk

稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连结。

class DenseBlock(nn.Block):
    def __init__(self, num_convs, num_channels, **kwargs):
        super(DenseBlock, self).__init__(**kwargs)
        self.net = nn.Sequential()
        for _ in range(num_convs):
            self.net.add(conv_block(num_channels))

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            X = nd.concat(X, Y, dim=1)  # 在通道维上将输入和输出连结
        return X

由于每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

def transition_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=1),
            nn.AvgPool2D(pool_size=2, strides=2))
    return blk

下面是DesNet的网络架构:

#DenseNet首先使用同ResNet一样的单卷积层和最大池化层。
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))

#类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与上一节的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
#ResNet里通过步幅为2的残差块在每个模块之间减小高和宽。这里我们则使用过渡层来减半高和宽,并减半通道数。

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))

#同ResNet一样,最后接上全局池化层和全连接层来输出。
net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(),
        nn.Dense(10))

 

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值