import os
import sys
from indoor3d_util import DATA_PATH, collect_point_label
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
anno_paths = [line.rstrip() for line in open(os.path.join(BASE_DIR, 'meta/anno_paths.txt'))]
anno_paths = [os.path.join(DATA_PATH, p) for p in anno_paths]
output_folder = os.path.join(ROOT_DIR, 'data/chuzhou')
if not os.path.exists(output_folder):
os.mkdir(output_folder)
# Note: there is an extra character in the v1.2 data in Area_5/hallway_6. It's fixed manually.
for anno_path in anno_paths:
print(anno_path)
try:
elements = anno_path.split('/')
out_filename = elements[-3]+'_'+elements[-2]+'.npy' # Area_1_hallway_1.npy
collect_point_label(anno_path, os.path.join(output_folder, out_filename), 'numpy')
except:
print(anno_path, 'ERROR!!')
这是collect_indoor3d_data文件,
import numpy as np
import glob
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
DATA_PATH = os.path.join(ROOT_DIR, 'data','chuzhou')
g_classes = [x.rstrip() for x in open(os.path.join(BASE_DIR, 'meta/class_names.txt'))]
g_class2label = {cls: i for i,cls in enumerate(g_classes)}
g_class2color = {'ceiling': [0,255,0],
'floor': [0,0,255],
'wall': [0,255,255],
'beam': [255,255,0],
'column': [255,0,255],
'window': [100,100,255],
'door': [200,200,100],
'table': [170,120,200],
'chair': [255,0,0],
'sofa': [200,100,100],
'bookcase': [10,200,100],
'board': [200,200,200],
'clutter': [50,50,50]}
g_easy_view_labels = [7,8,9,10,11,1]
g_label2color = {g_classes.index(cls): g_class2color[cls] for cls in g_classes}
# -----------------------------------------------------------------------------
# CONVERT ORIGINAL DATA TO OUR DATA_LABEL FILES
# -----------------------------------------------------------------------------
def collect_point_label(anno_path, out_filename, file_format='txt'):
""" Convert original dataset files to data_label file (each line is XYZRGBL).
We aggregated all the points from each instance in the room.
Args:
anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
out_filename: path to save collected points and labels (each line is XYZRGBL)
file_format: txt or numpy, determines what file format to save.
Returns:
None
Note:
the points are shifted before save, the most negative point is now at origin.
"""
points_list = []
for f in glob.glob(os.path.join(anno_path, '*.txt')):
cls = os.path.basename(f).split('_')[0]
print(f)
if cls not in g_classes: # note: in some room there is 'staris' class..
cls = 'clutter'
points = np.loadtxt(f)
labels = np.ones((points.shape[0],1)) * g_class2label[cls]
points_list.append(np.concatenate([points, labels], 1)) # Nx7
data_label = np.concatenate(points_list, 0)
xyz_min = np.amin(data_label, axis=0)[0:3]
data_label[:, 0:3] -= xyz_min
if file_format=='txt':
fout = open(out_filename, 'w')
for i in range(data_label.shape[0]):
fout.write('%f %f %f %d %d %d %d\n' % \
(data_label[i,0], data_label[i,1], data_label[i,2],
data_label[i,3], data_label[i,4], data_label[i,5],
data_label[i,6]))
fout.close()
elif file_format=='numpy':
np.save(out_filename, data_label)
else:
print('ERROR!! Unknown file format: %s, please use txt or numpy.' % \
(file_format))
exit()
def data_to_obj(data,name='example.obj',no_wall=True):
fout = open(name, 'w')
label = data[:, -1].astype(int)
for i in range(data.shape[0]):
if no_wall and ((label[i] == 2) or (label[i]==0)):
continue
fout.write('v %f %f %f %d %d %d\n' % \
(data[i, 0], data[i, 1], data[i, 2], data[i, 3], data[i, 4], data[i, 5]))
fout.close()
def point_label_to_obj(input_filename, out_filename, label_color=True, easy_view=False, no_wall=False):
""" For visualization of a room from data_label file,
input_filename: each line is X Y Z R G B L
out_filename: OBJ filename,
visualize input file by coloring point with label color
easy_view: only visualize furnitures and floor
"""
data_label = np.loadtxt(input_filename)
data = data_label[:, 0:6]
label = data_label[:, -1].astype(int)
fout = open(out_filename, 'w')
for i in range(data.shape[0]):
color = g_label2color[label[i]]
if easy_view and (label[i] not in g_easy_view_labels):
continue
if no_wall and ((label[i] == 2) or (label[i]==0)):
continue
if label_color:
fout.write('v %f %f %f %d %d %d\n' % \
(data[i,0], data[i,1], data[i,2], color[0], color[1], color[2]))
else:
fout.write('v %f %f %f %d %d %d\n' % \
(data[i,0], data[i,1], data[i,2], data[i,3], data[i,4], data[i,5]))
fout.close()
# -----------------------------------------------------------------------------
# PREPARE BLOCK DATA FOR DEEPNETS TRAINING/TESTING
# -----------------------------------------------------------------------------
def sample_data(data, num_sample):
""" data is in N x ...
we want to keep num_samplexC of them.
if N > num_sample, we will randomly keep num_sample of them.
if N < num_sample, we will randomly duplicate samples.
"""
N = data.shape[0]
if (N == num_sample):
return data, range(N)
elif (N > num_sample):
sample = np.random.choice(N, num_sample)
return data[sample, ...], sample
else:
sample = np.random.choice(N, num_sample-N)
dup_data = data[sample, ...]
return np.concatenate([data, dup_data], 0), list(range(N))+list(sample)
def sample_data_label(data, label, num_sample):
new_data, sample_indices = sample_data(data, num_sample)
new_label = label[sample_indices]
return new_data, new_label
def room2blocks(data, label, num_point, block_size=1.0, stride=1.0,
random_sample=False, sample_num=None, sample_aug=1):
""" Prepare block training data.
Args:
data: N x 6 numpy array, 012 are XYZ in meters, 345 are RGB in [0,1]
assumes the data is shifted (min point is origin) and aligned
(aligned with XYZ axis)
label: N size uint8 numpy array from 0-12
num_point: int, how many points to sample in each block
block_size: float, physical size of the block in meters
stride: float, stride for block sweeping
random_sample: bool, if True, we will randomly sample blocks in the room
sample_num: int, if random sample, how many blocks to sample
[default: room area]
sample_aug: if random sample, how much aug
Returns:
block_datas: K x num_point x 6 np array of XYZRGB, RGB is in [0,1]
block_labels: K x num_point x 1 np array of uint8 labels
TODO: for this version, blocking is in fixed, non-overlapping pattern.
"""
assert(stride<=block_size)
limit = np.amax(data, 0)[0:3]
# Get the corner location for our sampling blocks
xbeg_list = []
ybeg_list = []
if not random_sample:
num_block_x = int(np.ceil((limit[0] - block_size) / stride)) + 1
num_block_y = int(np.ceil(collect_point_label(limit[1] - block_size) / stride)) + 1
for i in range(num_block_x):
for j in range(num_block_y):
xbeg_list.append(i*stride)
ybeg_list.append(j*stride)
else:
num_block_x = int(np.ceil(limit[0] / block_size))
num_block_y = int(np.ceil(limit[1] / block_size))
if sample_num is None:
sample_num = num_block_x * num_block_y * sample_aug
for _ in range(sample_num):
xbeg = np.random.uniform(-block_size, limit[0])
ybeg = np.random.uniform(-block_size, limit[1])
xbeg_list.append(xbeg)
ybeg_list.append(ybeg)
# Collect blocks
block_data_list = []
block_label_list = []
idx = 0
for idx in range(len(xbeg_list)):
xbeg = xbeg_list[idx]
ybeg = ybeg_list[idx]
xcond = (data[:,0]<=xbeg+block_size) & (data[:,0]>=xbeg)
ycond = (data[:,1]<=ybeg+block_size) & (data[:,1]>=ybeg)
cond = xcond & ycond
if np.sum(cond) < 100: # discard block if there are less than 100 pts.
continue
block_data = data[cond, :]
block_label = label[cond]
# randomly subsample data
block_data_sampled, block_label_sampled = \
sample_data_label(block_data, block_label, num_point)
block_data_list.append(np.expand_dims(block_data_sampled, 0))
block_label_list.append(np.expand_dims(block_label_sampled, 0))
return np.concatenate(block_data_list, 0), \
np.concatenate(block_label_list, 0)
def room2blocks_plus(data_label, num_point, block_size, stride,
random_sample, sample_num, sample_aug):
""" room2block with input filename and RGB preprocessing.
"""
data = data_label[:,0:6]
data[:,3:6] /= 255.0
label = data_label[:,-1].astype(np.uint8)
return room2blocks(data, label, num_point, block_size, stride,
random_sample, sample_num, sample_aug)
def room2blocks_wrapper(data_label_filename, num_point, block_size=1.0, stride=1.0,
random_sample=False, sample_num=None, sample_aug=1):
if data_label_filename[-3:] == 'txt':
data_label = np.loadtxt(data_label_filename)
elif data_label_filename[-3:] == 'npy':
data_label = np.load(data_label_filename)
else:
print('Unknown file type! exiting.')
exit()
return room2blocks_plus(data_label, num_point, block_size, stride,
random_sample, sample_num, sample_aug)
def room2blocks_plus_normalized(data_label, num_point, block_size, stride,
random_sample, sample_num, sample_aug):
""" room2block, with input filename and RGB preprocessing.
for each block centralize XYZ, add normalized XYZ as 678 channels
"""
data = data_label[:,0:6]
data[:,3:6] /= 255.0
label = data_label[:,-1].astype(np.uint8)
max_room_x = max(data[:,0])
max_room_y = max(data[:,1])
max_room_z = max(data[:,2])
data_batch, label_batch = room2blocks(data, label, num_point, block_size, stride,
random_sample, sample_num, sample_aug)
new_data_batch = np.zeros((data_batch.shape[0], num_point, 9))
for b in range(data_batch.shape[0]):
new_data_batch[b, :, 6] = data_batch[b, :, 0]/max_room_x
new_data_batch[b, :, 7] = data_batch[b, :, 1]/max_room_y
new_data_batch[b, :, 8] = data_batch[b, :, 2]/max_room_z
minx = min(data_batch[b, :, 0])
miny = min(data_batch[b, :, 1])
data_batch[b, :, 0] -= (minx+block_size/2)
data_batch[b, :, 1] -= (miny+block_size/2)
new_data_batch[:, :, 0:6] = data_batch
return new_data_batch, label_batch
def room2blocks_wrapper_normalized(data_label_filename, num_point, block_size=1.0, stride=1.0,
random_sample=False, sample_num=None, sample_aug=1):
if data_label_filename[-3:] == 'txt':
data_label = np.loadtxt(data_label_filename)
elif data_label_filename[-3:] == 'npy':
data_label = np.load(data_label_filename)
else:
print('Unknown file type! exiting.')
exit()
return room2blocks_plus_normalized(data_label, num_point, block_size, stride,
random_sample, sample_num, sample_aug)
def room2samples(data, label, sample_num_point):
""" Prepare whole room samples.
Args:
data: N x 6 numpy array, 012 are XYZ in meters, 345 are RGB in [0,1]
assumes the data is shifted (min point is origin) and
aligned (aligned with XYZ axis)
label: N size uint8 numpy array from 0-12
sample_num_point: int, how many points to sample in each sample
Returns:
sample_datas: K x sample_num_point x 9
numpy array of XYZRGBX'Y'Z', RGB is in [0,1]
sample_labels: K x sample_num_point x 1 np array of uint8 labels
"""
N = data.shape[0]
order = np.arange(N)
np.random.shuffle(order)
data = data[order, :]
label = label[order]
batch_num = int(np.ceil(N / float(sample_num_point)))
sample_datas = np.zeros((batch_num, sample_num_point, 6))
sample_labels = np.zeros((batch_num, sample_num_point, 1))
for i in range(batch_num):
beg_idx = i*sample_num_point
end_idx = min((i+1)*sample_num_point, N)
num = end_idx - beg_idx
sample_datas[i,0:num,:] = data[beg_idx:end_idx, :]
sample_labels[i,0:num,0] = label[beg_idx:end_idx]
if num < sample_num_point:
makeup_indices = np.random.choice(N, sample_num_point - num)
sample_datas[i,num:,:] = data[makeup_indices, :]
sample_labels[i,num:,0] = label[makeup_indices]
return sample_datas, sample_labels
def room2samples_plus_normalized(data_label, num_point):
""" room2sample, with input filename and RGB preprocessing.
for each block centralize XYZ, add normalized XYZ as 678 channels
"""
data = data_label[:,0:6]
data[:,3:6] /= 255.0
label = data_label[:,-1].astype(np.uint8)
max_room_x = max(data[:,0])
max_room_y = max(data[:,1])
max_room_z = max(data[:,2])
#print(max_room_x, max_room_y, max_room_z)
data_batch, label_batch = room2samples(data, label, num_point)
new_data_batch = np.zeros((data_batch.shape[0], num_point, 9))
for b in range(data_batch.shape[0]):
new_data_batch[b, :, 6] = data_batch[b, :, 0]/max_room_x
new_data_batch[b, :, 7] = data_batch[b, :, 1]/max_room_y
new_data_batch[b, :, 8] = data_batch[b, :, 2]/max_room_z
#minx = min(data_batch[b, :, 0])
#miny = min(data_batch[b, :, 1])
#data_batch[b, :, 0] -= (minx+block_size/2)
#data_batch[b, :, 1] -= (miny+block_size/2)
new_data_batch[:, :, 0:6] = data_batch
return new_data_batch, label_batch
def room2samples_wrapper_normalized(data_label_filename, num_point):
if data_label_filename[-3:] == 'txt':
data_label = np.loadtxt(data_label_filename)
elif data_label_filename[-3:] == 'npy':
data_label = np.load(data_label_filename)
else:
print('Unknown file type! exiting.')
exit()
return room2samples_plus_normalized(data_label, num_point)
# -----------------------------------------------------------------------------
# EXTRACT INSTANCE BBOX FROM ORIGINAL DATA (for detection evaluation)
# -----------------------------------------------------------------------------
def collect_bounding_box(anno_path, out_filename):
""" Compute bounding boxes from each instance in original dataset files on
one room. **We assume the bbox is aligned with XYZ coordinate.**
Args:
anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
out_filename: path to save instance bounding boxes for that room.
each line is x1 y1 z1 x2 y2 z2 label,
where (x1,y1,z1) is the point on the diagonal closer to origin
Returns:
None
Note:
room points are shifted, the most negative point is now at origin.
"""
bbox_label_list = []
for f in glob.glob(os.path.join(anno_path, '*.txt')):
cls = os.path.basename(f).split('_')[0]
if cls not in g_classes: # note: in some room there is 'staris' class..
cls = 'clutter'
points = np.loadtxt(f)
label = g_class2label[cls]
# Compute tightest axis aligned bounding box
xyz_min = np.amin(points[:, 0:3], axis=0)
xyz_max = np.amax(points[:, 0:3], axis=0)
ins_bbox_label = np.expand_dims(
np.concatenate([xyz_min, xyz_max, np.array([label])], 0), 0)
bbox_label_list.append(ins_bbox_label)
bbox_label = np.concatenate(bbox_label_list, 0)
room_xyz_min = np.amin(bbox_label[:, 0:3], axis=0)
bbox_label[:, 0:3] -= room_xyz_min
bbox_label[:, 3:6] -= room_xyz_min
fout = open(out_filename, 'w')
for i in range(bbox_label.shape[0]):
fout.write('%f %f %f %f %f %f %d\n' % \
(bbox_label[i,0], bbox_label[i,1], bbox_label[i,2],
bbox_label[i,3], bbox_label[i,4], bbox_label[i,5],
bbox_label[i,6]))
fout.close()
def bbox_label_to_obj(input_filename, out_filename_prefix, easy_view=False):
""" Visualization of bounding boxes.
Args:
input_filename: each line is x1 y1 z1 x2 y2 z2 label
out_filename_prefix: OBJ filename prefix,
visualize object by g_label2color
easy_view: if True, only visualize furniture and floor
Returns:
output a list of OBJ file and MTL files with the same prefix
"""
bbox_label = np.loadtxt(input_filename)
bbox = bbox_label[:, 0:6]
label = bbox_label[:, -1].astype(int)
v_cnt = 0 # count vertex
ins_cnt = 0 # count instance
for i in range(bbox.shape[0]):
if easy_view and (label[i] not in g_easy_view_labels):
continue
obj_filename = out_filename_prefix+'_'+g_classes[label[i]]+'_'+str(ins_cnt)+'.obj'
mtl_filename = out_filename_prefix+'_'+g_classes[label[i]]+'_'+str(ins_cnt)+'.mtl'
fout_obj = open(obj_filename, 'w')
fout_mtl = open(mtl_filename, 'w')
fout_obj.write('mtllib %s\n' % (os.path.basename(mtl_filename)))
length = bbox[i, 3:6] - bbox[i, 0:3]
a = length[0]
b = length[1]
c = length[2]
x = bbox[i, 0]
y = bbox[i, 1]
z = bbox[i, 2]
color = np.array(g_label2color[label[i]], dtype=float) / 255.0
material = 'material%d' % (ins_cnt)
fout_obj.write('usemtl %s\n' % (material))
fout_obj.write('v %f %f %f\n' % (x,y,z+c))
fout_obj.write('v %f %f %f\n' % (x,y+b,z+c))
fout_obj.write('v %f %f %f\n' % (x+a,y+b,z+c))
fout_obj.write('v %f %f %f\n' % (x+a,y,z+c))
fout_obj.write('v %f %f %f\n' % (x,y,z))
fout_obj.write('v %f %f %f\n' % (x,y+b,z))
fout_obj.write('v %f %f %f\n' % (x+a,y+b,z))
fout_obj.write('v %f %f %f\n' % (x+a,y,z))
fout_obj.write('g default\n')
v_cnt = 0 # for individual box
fout_obj.write('f %d %d %d %d\n' % (4+v_cnt, 3+v_cnt, 2+v_cnt, 1+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (1+v_cnt, 2+v_cnt, 6+v_cnt, 5+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (7+v_cnt, 6+v_cnt, 2+v_cnt, 3+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (4+v_cnt, 8+v_cnt, 7+v_cnt, 3+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (5+v_cnt, 8+v_cnt, 4+v_cnt, 1+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (5+v_cnt, 6+v_cnt, 7+v_cnt, 8+v_cnt))
fout_obj.write('\n')
fout_mtl.write('newmtl %s\n' % (material))
fout_mtl.write('Kd %f %f %f\n' % (color[0], color[1], color[2]))
fout_mtl.write('\n')
fout_obj.close()
fout_mtl.close()
v_cnt += 8
ins_cnt += 1
def bbox_label_to_obj_room(input_filename, out_filename_prefix, easy_view=False, permute=None, center=False, exclude_table=False):
""" Visualization of bounding boxes.
Args:
input_filename: each line is x1 y1 z1 x2 y2 z2 label
out_filename_prefix: OBJ filename prefix,
visualize object by g_label2color
easy_view: if True, only visualize furniture and floor
permute: if not None, permute XYZ for rendering, e.g. [0 2 1]
center: if True, move obj to have zero origin
Returns:
output a list of OBJ file and MTL files with the same prefix
"""
bbox_label = np.loadtxt(input_filename)
bbox = bbox_label[:, 0:6]
if permute is not None:
assert(len(permute)==3)
permute = np.array(permute)
bbox[:,0:3] = bbox[:,permute]
bbox[:,3:6] = bbox[:,permute+3]
if center:
xyz_max = np.amax(bbox[:,3:6], 0)
bbox[:,0:3] -= (xyz_max/2.0)
bbox[:,3:6] -= (xyz_max/2.0)
bbox /= np.max(xyz_max/2.0)
label = bbox_label[:, -1].astype(int)
obj_filename = out_filename_prefix+'.obj'
mtl_filename = out_filename_prefix+'.mtl'
fout_obj = open(obj_filename, 'w')
fout_mtl = open(mtl_filename, 'w')
fout_obj.write('mtllib %s\n' % (os.path.basename(mtl_filename)))
v_cnt = 0 # count vertex
ins_cnt = 0 # count instance
for i in range(bbox.shape[0]):
if easy_view and (label[i] not in g_easy_view_labels):
continue
if exclude_table and label[i] == g_classes.index('table'):
continue
length = bbox[i, 3:6] - bbox[i, 0:3]
a = length[0]
b = length[1]
c = length[2]
x = bbox[i, 0]
y = bbox[i, 1]
z = bbox[i, 2]
color = np.array(g_label2color[label[i]], dtype=float) / 255.0
material = 'material%d' % (ins_cnt)
fout_obj.write('usemtl %s\n' % (material))
fout_obj.write('v %f %f %f\n' % (x,y,z+c))
fout_obj.write('v %f %f %f\n' % (x,y+b,z+c))
fout_obj.write('v %f %f %f\n' % (x+a,y+b,z+c))
fout_obj.write('v %f %f %f\n' % (x+a,y,z+c))
fout_obj.write('v %f %f %f\n' % (x,y,z))
fout_obj.write('v %f %f %f\n' % (x,y+b,z))
fout_obj.write('v %f %f %f\n' % (x+a,y+b,z))
fout_obj.write('v %f %f %f\n' % (x+a,y,z))
fout_obj.write('g default\n')
fout_obj.write('f %d %d %d %d\n' % (4+v_cnt, 3+v_cnt, 2+v_cnt, 1+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (1+v_cnt, 2+v_cnt, 6+v_cnt, 5+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (7+v_cnt, 6+v_cnt, 2+v_cnt, 3+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (4+v_cnt, 8+v_cnt, 7+v_cnt, 3+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (5+v_cnt, 8+v_cnt, 4+v_cnt, 1+v_cnt))
fout_obj.write('f %d %d %d %d\n' % (5+v_cnt, 6+v_cnt, 7+v_cnt, 8+v_cnt))
fout_obj.write('\n')
fout_mtl.write('newmtl %s\n' % (material))
fout_mtl.write('Kd %f %f %f\n' % (color[0], color[1], color[2]))
fout_mtl.write('\n')
v_cnt += 8
ins_cnt += 1
fout_obj.close()
fout_mtl.close()
def collect_point_bounding_box(anno_path, out_filename, file_format):
""" Compute bounding boxes from each instance in original dataset files on
one room. **We assume the bbox is aligned with XYZ coordinate.**
Save both the point XYZRGB and the bounding box for the point's
parent element.
Args:
anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
out_filename: path to save instance bounding boxes for each point,
plus the point's XYZRGBL
each line is XYZRGBL offsetX offsetY offsetZ a b c,
where cx = X+offsetX, cy=X+offsetY, cz=Z+offsetZ
where (cx,cy,cz) is center of the box, a,b,c are distances from center
to the surfaces of the box, i.e. x1 = cx-a, x2 = cx+a, y1=cy-b etc.
file_format: output file format, txt or numpy
Returns:
None
Note:
room points are shifted, the most negative point is now at origin.
"""
point_bbox_list = []
for f in glob.glob(os.path.join(anno_path, '*.txt')):
cls = os.path.basename(f).split('_')[0]
if cls not in g_classes: # note: in some room there is 'staris' class..
cls = 'clutter'
points = np.loadtxt(f) # Nx6
label = g_class2label[cls] # N,
# Compute tightest axis aligned bounding box
xyz_min = np.amin(points[:, 0:3], axis=0) # 3,
xyz_max = np.amax(points[:, 0:3], axis=0) # 3,
xyz_center = (xyz_min + xyz_max) / 2
dimension = (xyz_max - xyz_min) / 2
xyz_offsets = xyz_center - points[:,0:3] # Nx3
dimensions = np.ones((points.shape[0],3)) * dimension # Nx3
labels = np.ones((points.shape[0],1)) * label # N
point_bbox_list.append(np.concatenate([points, labels,
xyz_offsets, dimensions], 1)) # Nx13
point_bbox = np.concatenate(point_bbox_list, 0) # KxNx13
room_xyz_min = np.amin(point_bbox[:, 0:3], axis=0)
point_bbox[:, 0:3] -= room_xyz_min
if file_format == 'txt':
fout = open(out_filename, 'w')
for i in range(point_bbox.shape[0]):
fout.write('%f %f %f %d %d %d %d %f %f %f %f %f %f\n' % \
(point_bbox[i,0], point_bbox[i,1], point_bbox[i,2],
point_bbox[i,3], point_bbox[i,4], point_bbox[i,5],
point_bbox[i,6],
point_bbox[i,7], point_bbox[i,8], point_bbox[i,9],
point_bbox[i,10], point_bbox[i,11], point_bbox[i,12]))
fout.close()
elif file_format == 'numpy':
np.save(out_filename, point_bbox)
else:
print('ERROR!! Unknown file format: %s, please use txt or numpy.' % \
(file_format))
exit()
这是indoor3d_util.txt文件,更改代码满足对室外点云语义分割的处理,分为地面,建筑,人造设施,汽车,植被,未分类。标签分别为1,2,3,4,5,0
最新发布