LLaMA-Factory使用命令

We provide diverse examples about fine-tuning LLMs.

Make sure to execute these commands in the LLaMA-Factory directory.

Table of Contents

Use CUDA_VISIBLE_DEVICES (GPU) or ASCEND_RT_VISIBLE_DEVICES (NPU) to choose computing devices.

By default, LLaMA-Factory uses all visible computing devices.

Examples

LoRA Fine-Tuning

(Continuous) Pre-Training
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
Supervised Fine-Tuning
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
Multimodal Supervised Fine-Tuning
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
DPO/ORPO/SimPO Training
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
Multimodal DPO/ORPO/SimPO Training
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
Reward Modeling
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
PPO Training
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
KTO Training
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
Preprocess Dataset

It is useful for large dataset, use tokenized_path in config to load the preprocessed dataset.

llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
Evaluating on MMLU/CMMLU/C-Eval Benchmarks
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
Supervised Fine-Tuning on Multiple Nodes
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml

QLoRA Fine-Tuning

Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
Supervised Fine-Tuning with 4-bit AWQ Quantization
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
Supervised Fine-Tuning with 2-bit AQLM Quantization
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml

Full-Parameter Fine-Tuning

Supervised Fine-Tuning on Single Node
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
Supervised Fine-Tuning on Multiple Nodes
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
Multimodal Supervised Fine-Tuning
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml

Merging LoRA Adapters and Quantization

Merge LoRA Adapters

Note: DO NOT use quantized model or quantization_bit when merging LoRA adapters.

llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
Quantizing Model using AutoGPTQ
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml

Inferring LoRA Fine-Tuned Models

Batch Generation using vLLM Tensor Parallel
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
Use CLI ChatBox
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
Use Web UI ChatBox
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
Launch OpenAI-style API
llamafactory-cli api examples/inference/llama3_lora_sft.yaml

Extras

Full-Parameter Fine-Tuning using GaLore
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
Full-Parameter Fine-Tuning using BAdam
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
Full-Parameter Fine-Tuning using Adam-mini
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
LoRA+ Fine-Tuning
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
PiSSA Fine-Tuning
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
Mixture-of-Depths Fine-Tuning
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
LLaMA-Pro Fine-Tuning
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
FSDP+QLoRA Fine-Tuning
bash examples/extras/fsdp_qlora/train.sh
Computing BLEU and ROUGE Scores
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值