Transformer用于图像分类

对应论文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

直接看代码

首先看Transformer 类

class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
                Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
            ]))
            #ModuleList是一个存储不同module,并自动将每个模块的参数添加到网络之中的容器
            #与sequential的区别是,它的模块之间并没有先后顺序,运行时可以改
    def forward(self, x, mask = None):
        for attn, ff in self.layers:
            x = attn(x, mask = mask)
            x = ff(x)
        return x

self.layers中有多个类定义的对象,按照执行顺序,逐一解释。

Attention类

class At
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多模态

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值