- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
我的环境
语言环境:python 3.7.12
编译器:pycharm
深度学习环境:tensorflow 2.7.0
数据:本地数据集34-data
一、总结
这次实验除了训练集、验证集还设置了测试集。
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
#由于原始数据集不包含测试集,因此需要创建一个。
# 使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)
print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
数据增强的两种方式
方法一:将其嵌入model中
model = tf.keras.Sequential([
data_augmentation,
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
])
优点:
● 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。
方法二:在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE
def prepare(ds):
ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
return ds
train_ds = prepare(train_ds)
自定义数据增强
import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
seed = (random.randint(0,9), 0)
# 随机改变图像对比度
stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(image)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
那么如何将自定义增强函数应用到我们数据上呢?请参考下文的 preprocess_image 函数,将 aug_img 函数嵌入到 preprocess_image 函数中,在数据预处理时完成数据增强就OK啦。
# #方式二:在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE
def prepare(ds):
# ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
ds = ds.map(lambda x, y: (aug_img(x), y), num_parallel_calls=AUTOTUNE)
return ds
train_ds = prepare(train_ds)
模型训练与预测结果
14/14 [] - 120s 5s/step - loss: 1.8951 - accuracy: 0.4465 - val_loss: 0.6816 - val_accuracy: 0.6486
Epoch 2/20
14/14 [] - 0s 18ms/step - loss: 0.6815 - accuracy: 0.5534 - val_loss: 0.6288 - val_accuracy: 0.5878
Epoch 3/20
14/14 [] - 0s 18ms/step - loss: 0.6291 - accuracy: 0.6146 - val_loss: 0.5057 - val_accuracy: 0.8108
Epoch 4/20
14/14 [] - 0s 18ms/step - loss: 0.4853 - accuracy: 0.8249 - val_loss: 0.3718 - val_accuracy: 0.8311
Epoch 5/20
14/14 [] - 0s 18ms/step - loss: 0.3221 - accuracy: 0.8870 - val_loss: 0.3582 - val_accuracy: 0.8649
Epoch 6/20
14/14 [] - 0s 17ms/step - loss: 0.2188 - accuracy: 0.9288 - val_loss: 0.3413 - val_accuracy: 0.8649
Epoch 7/20
14/14 [] - 0s 19ms/step - loss: 0.1607 - accuracy: 0.9643 - val_loss: 0.3995 - val_accuracy: 0.8649
Epoch 8/20
14/14 [] - 0s 19ms/step - loss: 0.1356 - accuracy: 0.9624 - val_loss: 0.3174 - val_accuracy: 0.8986
Epoch 9/20
14/14 [] - 0s 19ms/step - loss: 0.0998 - accuracy: 0.9643 - val_loss: 0.2877 - val_accuracy: 0.9189
Epoch 10/20
14/14 [] - 0s 19ms/step - loss: 0.0718 - accuracy: 0.9736 - val_loss: 0.3657 - val_accuracy: 0.9054
Epoch 11/20
14/14 [] - 0s 20ms/step - loss: 0.0457 - accuracy: 0.9969 - val_loss: 0.6842 - val_accuracy: 0.8649
Epoch 12/20
14/14 [] - 0s 19ms/step - loss: 0.0944 - accuracy: 0.9642 - val_loss: 0.3745 - val_accuracy: 0.9122
Epoch 13/20
14/14 [] - 0s 27ms/step - loss: 0.0387 - accuracy: 0.9959 - val_loss: 0.4615 - val_accuracy: 0.9054
Epoch 14/20
14/14 [] - 0s 19ms/step - loss: 0.0524 - accuracy: 0.9806 - val_loss: 0.4024 - val_accuracy: 0.9257
Epoch 15/20
14/14 [] - 0s 19ms/step - loss: 0.0088 - accuracy: 0.9985 - val_loss: 0.3981 - val_accuracy: 0.9392
Epoch 16/20
14/14 [] - 0s 19ms/step - loss: 0.0103 - accuracy: 1.0000 - val_loss: 0.4682 - val_accuracy: 0.9189
Epoch 17/20
14/14 [] - 0s 18ms/step - loss: 0.0156 - accuracy: 0.9995 - val_loss: 0.4237 - val_accuracy: 0.9324
Epoch 18/20
14/14 [] - 0s 18ms/step - loss: 0.0196 - accuracy: 0.9974 - val_loss: 0.4998 - val_accuracy: 0.9122
Epoch 19/20
14/14 [] - 0s 19ms/step - loss: 0.0521 - accuracy: 0.9944 - val_loss: 0.6491 - val_accuracy: 0.8919
Epoch 20/20
14/14 [] - 0s 18ms/step - loss: 0.0282 - accuracy: 0.9951 - val_loss: 0.5771 - val_accuracy: 0.9324
1/1 [==============================] - 0s 427ms/step - loss: 0.3045 - accuracy: 0.9062
Accuracy 0.90625
Process finished with exit code 0
二、代码
import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
data_dir = "./34-data"
img_height = 224
img_width = 224
batch_size = 32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
#由于原始数据集不包含测试集,因此需要创建一个。
# 使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)
print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
class_names = train_ds.class_names
print(class_names)# 打印类别
AUTOTUNE = tf.data.AUTOTUNE
def preprocess_image(image,label):
return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10
for images, labels in train_ds.take(1):
for i in range(8):
ax = plt.subplot(5, 8, i + 1)
plt.imshow(images[i])
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
##数据增强
data_augmentation = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])
#第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = data_augmentation(image)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0])
plt.axis("off")
plt.show()
#增强方式一:将其嵌入model中
model = tf.keras.Sequential([
data_augmentation,
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
])
# 方式一这样做的好处是:
# ● 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
# 注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。
# #方式二:在Dataset数据集中进行数据增强
# batch_size = 32
# AUTOTUNE = tf.data.AUTOTUNE
#
# def prepare(ds):
# ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
# return ds
# train_ds = prepare(train_ds)
#训练模型
model = tf.keras.Sequential([
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(len(class_names))
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs=20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
三、结果
数据集加载
使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。以及类别。
数据集随机输出
数据增强结果
Epoch 1/20
14/14 [] - 85s 4s/step - loss: 1.8392 - accuracy: 0.5236 - val_loss: 0.6538 - val_accuracy: 0.7905
Epoch 2/20
14/14 [] - 0s 18ms/step - loss: 0.6004 - accuracy: 0.7946 - val_loss: 0.4441 - val_accuracy: 0.8378
Epoch 3/20
14/14 [] - 0s 17ms/step - loss: 0.2920 - accuracy: 0.9256 - val_loss: 0.3296 - val_accuracy: 0.8919
Epoch 4/20
14/14 [] - 0s 18ms/step - loss: 0.1586 - accuracy: 0.9590 - val_loss: 0.3102 - val_accuracy: 0.8986
Epoch 5/20
14/14 [] - 0s 18ms/step - loss: 0.1253 - accuracy: 0.9707 - val_loss: 0.2443 - val_accuracy: 0.9324
Epoch 6/20
14/14 [] - 0s 18ms/step - loss: 0.0558 - accuracy: 0.9921 - val_loss: 0.2873 - val_accuracy: 0.9257
Epoch 7/20
14/14 [] - 0s 18ms/step - loss: 0.0249 - accuracy: 1.0000 - val_loss: 0.4234 - val_accuracy: 0.8851
Epoch 8/20
14/14 [] - 0s 17ms/step - loss: 0.0195 - accuracy: 0.9931 - val_loss: 0.3610 - val_accuracy: 0.9054
Epoch 9/20
14/14 [] - 0s 17ms/step - loss: 0.0111 - accuracy: 0.9962 - val_loss: 0.3370 - val_accuracy: 0.8986
Epoch 10/20
14/14 [] - 0s 18ms/step - loss: 0.0171 - accuracy: 1.0000 - val_loss: 0.3265 - val_accuracy: 0.9324
Epoch 11/20
14/14 [] - 0s 18ms/step - loss: 0.0301 - accuracy: 0.9965 - val_loss: 0.3381 - val_accuracy: 0.8986
Epoch 12/20
14/14 [] - 0s 18ms/step - loss: 0.0533 - accuracy: 0.9892 - val_loss: 0.3881 - val_accuracy: 0.9257
Epoch 13/20
14/14 [] - 0s 17ms/step - loss: 0.0403 - accuracy: 0.9825 - val_loss: 0.7449 - val_accuracy: 0.8514
Epoch 14/20
14/14 [] - 0s 17ms/step - loss: 0.1525 - accuracy: 0.9550 - val_loss: 0.6648 - val_accuracy: 0.8041
Epoch 15/20
14/14 [] - 0s 17ms/step - loss: 0.0935 - accuracy: 0.9710 - val_loss: 0.3407 - val_accuracy: 0.9324
Epoch 16/20
14/14 [] - 0s 18ms/step - loss: 0.0117 - accuracy: 0.9985 - val_loss: 0.6555 - val_accuracy: 0.9122
Epoch 17/20
14/14 [] - 0s 18ms/step - loss: 0.0241 - accuracy: 0.9858 - val_loss: 0.4262 - val_accuracy: 0.9459
Epoch 18/20
14/14 [] - 0s 18ms/step - loss: 0.0087 - accuracy: 0.9974 - val_loss: 0.3678 - val_accuracy: 0.9257
Epoch 19/20
14/14 [] - 0s 17ms/step - loss: 0.0188 - accuracy: 0.9915 - val_loss: 0.4021 - val_accuracy: 0.9257
Epoch 20/20
14/14 [] - 0s 17ms/step - loss: 0.0014 - accuracy: 1.0000 - val_loss: 0.4594 - val_accuracy: 0.9257
1/1 [==============================] - 1s 584ms/step - loss: 0.0517 - accuracy: 0.9688
Accuracy 0.96875