- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
我的环境
语言环境:python 3.7.12
编译器:pycharm
深度学习环境:tensorflow 2.7.0
数据:本地数据集
🍺 要求:
- 找到并处理第8周的程序问题(本文给出了答案)
🍻 拔高(可选):
2. 请尝试增加数据增强部分内容以提高准确率
3. 可以使用哪些方式进行数据增强?(下一周给出了答案)
🔎 探索(难度有点大)
4. 本文中的代码存在较大赘余,请对代码进行精简
一、总结
T8的错误
变量覆盖:
在每次迭代中,train_loss 和 train_accuracy 都会被重新赋值为当前 batch 的损失和准确率。
由于这些变量是 单个标量,而不是列表或数组,因此它们不会累积每个 batch 的值,而是每次都直接覆盖为最新的值
当 epoch 结束时
history_train_loss.append(train_loss) 和 history_train_accuracy.append(train_accuracy) 会将 最后一个 batch 的损失和准确率添加到 history_train_loss 和 history_train_accuracy 列表中。
这意味着,无论你在 epoch 中有多少个 batch,最终记录的损失和准确率都只反映了 最后一个 batch 的表现,而忽略了其他所有 batch 的信息。
会造成的问题
指标波动较大:由于只记录了最后一个 batch 的损失和准确率,可能会导致指标波动较大,尤其是在 batch 之间的损失和准确率差异较大的情况下。最后一个 batch 的表现可能并不能代表整个 epoch 的总体表现。
无法反映整体趋势:如果你关心的是整个 epoch 的总体表现,这种方式可能会导致误判。例如,如果最后一个 batch 的数据分布与之前的 batch 不同,或者该 batch 的样本数量较少,那么它的损失和准确率可能并不具有代表性。
不稳定的学习过程:如果你使用这些指标来监控模型的训练过程(例如通过早停或学习率调度器),基于最后一个 batch 的指标可能会导致不稳定的决策,因为它们可能并不是模型的真实表现。
for image, label in train_ds:
history = model.train_on_batch(image, label)
train_loss = history[0] # 每次迭代时,train_loss 被覆盖为当前 batch 的损失
train_accuracy = history[1] # 每次迭代时,train_accuracy 被覆盖为当前 batch 的准确率
pbar.set_postfix({"loss": "%.4f" % train_loss,
"accuracy": "%.4f" % train_accuracy,
"lr": K.get_value(model.optimizer.lr)})
pbar.update(1)
history_train_loss.append(train_loss) # epoch 结束时,记录的是最后一个 batch 的损失
history_train_accuracy.append(train_accuracy) # epoch 结束时,记录的是最后一个 batch 的准确率
T9的代码就这一问题进行了更正:
二、实验过程
2.1代码
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
import numpy as np
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
import os,PIL,pathlib
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
data_dir = "./365-9-data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
batch_size = 64
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
AUTOTUNE = tf.data.AUTOTUNE
def preprocess_image(image,label):
return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10
for images, labels in train_ds.take(1):
for i in range(10):
# ax = plt.subplot(5, 10, i + 1) # 5*10的子图网络
ax = plt.subplot(2, 5, i + 1) # 1*10的子图网络
plt.imshow(images[i])
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
# 1st block
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
# 2nd block
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
# 3rd block
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
# 4th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
# 5th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
# full connection
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
model = Model(input_tensor, output_tensor)
return model
model=VGG16(1000, (img_width, img_height, 3))
model.summary()
model.compile(optimizer="adam",
loss ='sparse_categorical_crossentropy',
metrics =['accuracy'])
from tqdm import tqdm
import tensorflow.keras.backend as K
epochs = 10
lr = 1e-4
# 记录训练数据,方便后面的分析
history_train_loss = []
history_train_accuracy = []
history_val_loss = []
history_val_accuracy = []
for epoch in range(epochs):
train_total = len(train_ds)
val_total = len(val_ds)
"""
total:预期的迭代数目
ncols:控制进度条宽度
mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
"""
with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=1, ncols=100) as pbar:
lr = lr * 0.92
K.set_value(model.optimizer.lr, lr)
train_loss = []
train_accuracy = []
for image, label in train_ds:
"""
训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法
想详细了解 train_on_batch 的同学,
可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
"""
# 这里生成的是每一个batch的acc与loss
history = model.train_on_batch(image, label)
train_loss.append(history[0])
train_accuracy.append(history[1])
pbar.set_postfix({"train_loss": "%.4f" % history[0],
"train_acc": "%.4f" % history[1],
"lr": K.get_value(model.optimizer.lr)})
pbar.update(1)
history_train_loss.append(np.mean(train_loss))
history_train_accuracy.append(np.mean(train_accuracy))
print('开始验证!')
with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=0.3, ncols=100) as pbar:
val_loss = []
val_accuracy = []
for image, label in val_ds:
# 这里生成的是每一个batch的acc与loss
history = model.test_on_batch(image, label)
val_loss.append(history[0])
val_accuracy.append(history[1])
pbar.set_postfix({"val_loss": "%.4f" % history[0],
"val_acc": "%.4f" % history[1]})
pbar.update(1)
history_val_loss.append(np.mean(val_loss))
history_val_accuracy.append(np.mean(val_accuracy))
print('结束验证!')
print("验证loss为:%.4f" % np.mean(val_loss))
print("验证准确率为:%.4f" % np.mean(val_accuracy))
epochs_range = range(epochs)
plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
import numpy as np
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3)) # 图形的宽为18高为5
plt.suptitle("预测结果展示")
for images, labels in val_ds.take(1):
for i in range(8):
ax = plt.subplot(1, 8, i + 1)
# 显示图片
plt.imshow(images[i].numpy())
# 需要给图片增加一个维度
img_array = tf.expand_dims(images[i], 0)
# 使用模型预测图片中的人物
predictions = model.predict(img_array)
plt.title(class_names[np.argmax(predictions)])
plt.axis("off")
2.2结果
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/67a2fcd57daf4377bf5a4c400af55579.png