https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate One simple way is to create a new Model that will output the layers that you are interested in: ```python from keras.models import Model model = ... # create the original model layer_name = 'my_layer' intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output) intermediate_output = intermediate_layer_model.predict(data) ``` Alternatively, you can build a Keras function that will return the output of a certain layer given a certain input, for example: ```python from keras import backend as K # with a Sequential model get_3rd_layer_output = K.function([model.layers[0].input], [model.layers[3].output]) layer_output = get_3rd_layer_output([x])[0] Similarly, you could build a Theano and TensorFlow function directly. ``` Note that if your model has a different behavior in training and testing phase (e.g. if it uses ```Dropout```, ```BatchNormalization```, etc.), you will need to pass the learning phase flag to your function: ```python get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()], [model.layers[3].output]) # output in test mode = 0 layer_output = get_3rd_layer_output([x, 0])[0] # output in train mode = 1 layer_output = get_3rd_layer_output([x, 1])[0] ``` ===================== ```X``` 是 ```model.layer[0].input]``` ==================== Example: ```python import keras import sys import numpy as np from keras.layers import Input, Embedding, LSTM, Dense from keras.models import Model from keras import losses # Headline input: meant to receive sequences of 100 integers, between 1 and 10000. # Note that we can name any layer by passing it a "name" argument. main_input = Input(shape=(100,), dtype='int32', name='main_input') # This embedding layer will encode the input sequence # into a sequence of dense 512-dimensional vectors. x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) # A LSTM will transform the vector sequence into a single vector, # containing information about the entire sequence lstm_out = LSTM(32, return_sequences=True, name='LSTM')(x) model = Model(inputs=main_input, outputs=lstm_out) model.compile(loss=losses.mean_squared_error, optimizer='sgd') #set input and labels num = 50 headline_data = np.random.randint(1,10000, size=(num,100)) additional_data = np.random.randint(1,10000, size=(num,5)) labels = np.random.randint(1,10000,size=(num,32)) #get the output of one intermediate layer intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer("LSTM").output) intermediate_output = intermediate_layer_model.predict(headline_data) print(intermediate_output.shape) sys.exit() #train model.fit([headline_data, additional_data], [labels, labels], epochs=7, batch_size=32) ```
keras中间层输出
最新推荐文章于 2025-03-26 21:57:35 发布