CF662C Binary Table

探讨使用FWT(Fast Walsh-Hadamard Transform)优化算法解决一个矩阵操作问题,目标是在无限次行或列取反操作后,找到矩阵中1的最小数量。通过预处理和FWT变换,将时间复杂度从O(2^n*m)优化到O(2^n*n)。

一道\(FWT\).
题目链接


题目概述

有一个\(n\)\(m\)列的表格,每格中都有\(0\)\(1\).
每次操作可以将某行或某列取反.
操作次数无限,求最后表格中最少有多少个\(1\).
\(n\leq 20,m\leq 100000\)


解析

我们先想一个简单的暴力.
考虑暴力枚举每行是否取反.假设状态是\(S\).
相当于每列的数都异或上\(S\).然后预处理\(popcount\)计算,取异或结果中\(0/1\)数量的较小值即可(因为可以通过取反一列来改变).
时间复杂度\(O(2^n*m)\),无法通过本题.

考虑如何优化.
首先先把每一列表示的二进制数记录下来.
\(a_i\)表示\(i\)这个数在表格中出现了几次,
再令\(b_i\)表示\(min(popcount(i),n-popcount(i))\)
那么假设枚举的状态是\(S\),那么此时对应的答案\(ans_S=\sum_{i=0}^{2^n}a_i*b_{i\oplus S}\)
换一种表现形式就是\(ans_S=\sum_{i\oplus j=S}a_ib_j\)
那么就直接\(FWT\)即可.
时间复杂度\(O(2^n*n)\)

代码如下
真的超级短呢

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#define N (1<<21)
#define M (100010)
#define inf (0x7f7f7f7f)
#define rg register int
#define Label puts("NAIVE")
#define spa print(' ')
#define ent print('\n')
#define rand() (((rand())<<(15))^(rand()))
typedef long double ld;
typedef long long LL;
typedef unsigned long long ull;
using namespace std;
inline char read(){
    static const int IN_LEN=1000000;
    static char buf[IN_LEN],*s,*t;
    return (s==t?t=(s=buf)+fread(buf,1,IN_LEN,stdin),(s==t?-1:*s++):*s++);
}
template<class T>
inline void read(T &x){
    static bool iosig;
    static char c;
    for(iosig=false,c=read();!isdigit(c);c=read()){
        if(c=='-')iosig=true;
        if(c==-1)return;
    }
    for(x=0;isdigit(c);c=read())x=((x+(x<<2))<<1)+(c^'0');
    if(iosig)x=-x;
}
inline char readchar(){
    static char c;
    for(c=read();!isalpha(c)&&!isdigit(c);c=read())
    if(c==-1)return 0;
    return c;
}
const int OUT_LEN = 10000000;
char obuf[OUT_LEN],*ooh=obuf;
inline void print(char c) {
    if(ooh==obuf+OUT_LEN)fwrite(obuf,1,OUT_LEN,stdout),ooh=obuf;
    *ooh++=c;
}
template<class T>
inline void print(T x){
    static int buf[30],cnt;
    if(x==0)print('0');
    else{
        if(x<0)print('-'),x=-x;
        for(cnt=0;x;x/=10)buf[++cnt]=x%10+48;
        while(cnt)print((char)buf[cnt--]);
    }
}
inline void flush(){fwrite(obuf,1,ooh-obuf,stdout);}
int n,m,num[M],Lim,pc[N];
LL a[N],b[N],ans=1e18;
void FWT(LL *a,int tp){
    for(int i=1;i<Lim;i<<=1)
    for(int R=i<<1,j=0;j<Lim;j+=R)
    for(int k=j;k<j+i;k++){
        LL x=a[k],y=a[k+i];
        a[k]=x+y,a[k+i]=x-y;
        if(tp==-1)a[k]/=2,a[k+i]/=2;
    }
}
int main(){
    read(n),read(m),Lim=(1<<n);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    (num[j]=(num[j]<<1)+readchar()-'0');
    for(int i=1;i<=m;i++)
    a[num[i]]++;
    for(int i=1;i<Lim;i++)
    pc[i]=pc[i>>1]+(i&1),b[i]=min(pc[i],n-pc[i]);
    FWT(a,1),FWT(b,1);
    for(int i=0;i<Lim;i++)a[i]=(a[i]*b[i]);
    FWT(a,-1);
    for(int i=0;i<Lim;i++)ans=min(ans,a[i]);
    printf("%lld\n",ans);
}

转载于:https://www.cnblogs.com/Romeolong/p/10075309.html

SELECT PRO_GROUPID, PRO_GROUPDESC, PROVINCECOMSNAME, YEAR_VALUEPREM_ZT, LY_VALUEPREM_ZT, YEAR_VALUEPREM_PLAN_ZT, CHANGE_RATE_ZT, ACHIEVEMENT_RATE_ZT, YEAR_VALUEPREM_YX, LY_VALUEPREM_YX, YEAR_VALUEPREM_PLAN_YX, CHANGE_RATE_YX, ACHIEVEMENT_RATE_YX, YEAR_VALUEPREM_SZ, LY_VALUEPREM_SZ, YEAR_VALUEPREM_PLAN_SZ, CHANGE_RATE_SZ, ACHIEVEMENT_RATE_SZ, YEAR_VALUEPREM_YDCF, LY_VALUEPREM_YDCF, YEAR_VALUEPREM_PLAN_YDCF, CHANGE_RATE_YDCF, ACHIEVEMENT_RATE_YDCF, YEAR_VALUEPREM_YD, LY_VALUEPREM_YD, YEAR_VALUEPREM_PLAN_YD, CHANGE_RATE_YD, ACHIEVEMENT_RATE_YD, YEAR_VALUEPREM_CF, LY_VALUEPREM_CF, YEAR_VALUEPREM_PLAN_CF, CHANGE_RATE_CF, ACHIEVEMENT_RATE_CF, YEAR_VALUEPREM_GY, LY_VALUEPREM_GY, YEAR_VALUEPREM_PLAN_GY, CHANGE_RATE_GY, ACHIEVEMENT_RATE_GY, LOADDATE, SOURCE_TABLE FROM ( SELECT a.DATEID, a.PRO_GROUPID, pg.PRO_GROUPDESC, pc.PROVINCECOMSNAME, a.YEAR_VALUEPREM_ZT, a.LY_VALUEPREM_ZT, a.YEAR_VALUEPREM_PLAN_ZT, 1 AS ACHIEVEMENT_RATE_ZT, 1 AS CHANGE_RATE_ZT, a.YEAR_VALUEPREM_YX, a.LY_VALUEPREM_YX, a.YEAR_VALUEPREM_PLAN_YX, 1 AS ACHIEVEMENT_RATE_YX, 1 AS CHANGE_RATE_YX, a.YEAR_VALUEPREM_SZ, a.LY_VALUEPREM_SZ, a.YEAR_VALUEPREM_PLAN_SZ, 1 AS ACHIEVEMENT_RATE_SZ, 1 AS CHANGE_RATE_SZ, a.YEAR_VALUEPREM_YDCF, a.LY_VALUEPREM_YDCF, a.YEAR_VALUEPREM_PLAN_YDCF, 1 AS ACHIEVEMENT_RATE_YDCF, 1 AS CHANGE_RATE_YDCF, a.YEAR_VALUEPREM_YD, a.LY_VALUEPREM_YD, a.YEAR_VALUEPREM_PLAN_YD, 1 AS ACHIEVEMENT_RATE_YD, 1 AS CHANGE_RATE_YD, a.YEAR_VALUEPREM_CF, a.LY_VALUEPREM_CF, a.YEAR_VALUEPREM_PLAN_CF, 1 AS ACHIEVEMENT_RATE_CF, 1 AS CHANGE_RATE_CF, a.YEAR_VALUEPREM_GY, a.LY_VALUEPREM_GY, a.YEAR_VALUEPREM_PLAN_GY, 1 AS ACHIEVEMENT_RATE_GY, 1 AS CHANGE_RATE_GY, a.LOADDATE, 'D006' AS SOURCE_TABLE FROM DMR_BD_A0101_D006 a LEFT JOIN D_PRO_GROUP pg ON a.PRO_GROUPID = pg.PRO_GROUPID LEFT JOIN D_PROVINCECOM pc ON a.PROVINCECOMCODE = pc.PROVINCECOMCODE UNION ALL SELECT b.DATEID, b.PRO_GROUPID, pg.PRO_GROUPDESC, pg.PRO_GROUPDESC || '合计' AS PROVINCECOMSNAME, b.YEAR_VALUEPREM_ZT, b.LY_VALUEPREM_ZT, b.YEAR_VALUEPREM_PLAN_ZT, 1 AS ACHIEVEMENT_RATE_ZT, 1 AS CHANGE_RATE_ZT, b.YEAR_VALUEPREM_YX, b.LY_VALUEPREM_YX, b.YEAR_VALUEPREM_PLAN_YX, 1 AS ACHIEVEMENT_RATE_YX, 1 AS CHANGE_RATE_YX, b.YEAR_VALUEPREM_SZ, b.LY_VALUEPREM_SZ, b.YEAR_VALUEPREM_PLAN_SZ, 1 AS ACHIEVEMENT_RATE_SZ, 1 AS CHANGE_RATE_SZ, b.YEAR_VALUEPREM_YDCF, b.LY_VALUEPREM_YDCF, b.YEAR_VALUEPREM_PLAN_YDCF, 1 AS ACHIEVEMENT_RATE_YDCF, 1 AS CHANGE_RATE_YDCF, b.YEAR_VALUEPREM_YD, b.LY_VALUEPREM_YD, b.YEAR_VALUEPREM_PLAN_YD, 1 AS ACHIEVEMENT_RATE_YD, 1 AS CHANGE_RATE_YD, b.YEAR_VALUEPREM_CF, b.LY_VALUEPREM_CF, b.YEAR_VALUEPREM_PLAN_CF, 1 AS ACHIEVEMENT_RATE_CF, 1 AS CHANGE_RATE_CF, b.YEAR_VALUEPREM_GY, b.LY_VALUEPREM_GY, b.YEAR_VALUEPREM_PLAN_GY, 1 AS ACHIEVEMENT_RATE_GY, 1 AS CHANGE_RATE_GY, b.LOADDATE, 'D006_1' AS SOURCE_TABLE FROM DMR_BD_A0101_D006_1 b LEFT JOIN D_PRO_GROUP pg ON b.PRO_GROUPID = pg.PRO_GROUPID UNION ALL SELECT c.DATEID, 0 AS PRO_GROUPID, '系统合计' AS PRO_GROUPDESC, '系统合计' AS PROVINCECOMSNAME, c.YEAR_VALUEPREM_ZT, c.LY_VALUEPREM_ZT, c.YEAR_VALUEPREM_PLAN_ZT, 1 AS ACHIEVEMENT_RATE_ZT, 1 AS CHANGE_RATE_ZT, c.YEAR_VALUEPREM_YX, c.LY_VALUEPREM_YX, c.YEAR_VALUEPREM_PLAN_YX, 1 AS ACHIEVEMENT_RATE_YX, 1 AS CHANGE_RATE_YX, c.YEAR_VALUEPREM_SZ, c.LY_VALUEPREM_SZ, c.YEAR_VALUEPREM_PLAN_SZ, 1 AS ACHIEVEMENT_RATE_SZ, 1 AS CHANGE_RATE_SZ, c.YEAR_VALUEPREM_YDCF, c.LY_VALUEPREM_YDCF, c.YEAR_VALUEPREM_PLAN_YDCF, 1 AS ACHIEVEMENT_RATE_YDCF, 1 AS CHANGE_RATE_YDCF, c.YEAR_VALUEPREM_YD, c.LY_VALUEPREM_YD, c.YEAR_VALUEPREM_PLAN_YD, 1 AS ACHIEVEMENT_RATE_YD, 1 AS CHANGE_RATE_YD, c.YEAR_VALUEPREM_CF, c.LY_VALUEPREM_CF, c.YEAR_VALUEPREM_PLAN_CF, 1 AS ACHIEVEMENT_RATE_CF, 1 AS CHANGE_RATE_CF, c.YEAR_VALUEPREM_GY, c.LY_VALUEPREM_GY, c.YEAR_VALUEPREM_PLAN_GY, 1 AS ACHIEVEMENT_RATE_GY, 1 AS CHANGE_RATE_GY, c.LOADDATE, 'D006_2' AS SOURCE_TABLE FROM DMR_BD_A0101_D006_2 c ) alls ORDER BY pro_groupID, SOURCE_TABLE, YEAR_VALUEPREM_ZT;这是我的sql YEAR_VALUEPREM_ZT字段排序未生效数据库中字段为NUMBER
09-13
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值