LOJ2540 随机算法

题目链接
看到\(n\leq 20\),马上想到状压\(dp\).
考虑用\(f[S][i]\)表示集合\(S\)已经被考虑过了,独立集大小为\(i\)的方案数.
显然,这个集合\(S\)的最外层显然都没有被选.
考虑如何转移.
枚举一个\(j\notin S\),那么独立集大小显然\(+1\),然后所有和\(j\)相连的点都不能选了.
那么用\(w[j]\)记录与\(j\)相邻的集合,然后就可以转移了.
\(f[S\cup j][i+1]\leftarrow f[S\cup j][i+1]+f[S][i]*A_{n-|S|-1}^{|w[j]|-|w[j]\cap S|-1}\)
时间复杂度看似是\(O(2^n*n^2)\)的,但是因为跑不满,所以跑得过
代码如下
其实也没有什么好贴的了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#define N (22)
#define P (998244353)
#define inf (0x7f7f7f7f)
#define rg register int
#define Label puts("NAIVE")
#define spa print(' ')
#define ent print('\n')
#define rand() (((rand())<<(15))^(rand()))
typedef long double ld;
typedef long long LL;
typedef unsigned long long ull;
using namespace std;
inline char read(){
    static const int IN_LEN=1000000;
    static char buf[IN_LEN],*s,*t;
    return (s==t?t=(s=buf)+fread(buf,1,IN_LEN,stdin),(s==t?-1:*s++):*s++);
}
template<class T>
inline void read(T &x){
    static bool iosig;
    static char c;
    for(iosig=false,c=read();!isdigit(c);c=read()){
        if(c=='-')iosig=true;
        if(c==-1)return;
    }
    for(x=0;isdigit(c);c=read())x=((x+(x<<2))<<1)+(c^'0');
    if(iosig)x=-x;
}
inline char readchar(){
    static char c;
    for(c=read();!isalpha(c);c=read())
    if(c==-1)return 0;
    return c;
}
const int OUT_LEN = 10000000;
char obuf[OUT_LEN],*ooh=obuf;
inline void print(char c) {
    if(ooh==obuf+OUT_LEN)fwrite(obuf,1,OUT_LEN,stdout),ooh=obuf;
    *ooh++=c;
}
template<class T>
inline void print(T x){
    static int buf[30],cnt;
    if(x==0)print('0');
    else{
        if(x<0)print('-'),x=-x;
        for(cnt=0;x;x/=10)buf[++cnt]=x%10+48;
        while(cnt)print((char)buf[cnt--]);
    }
}
inline void flush(){fwrite(obuf,1,ooh-obuf,stdout);}
int n,s[N][N],w[N],Lim,cnt[(1<<N)],m;
LL f[1<<N][N+1],jc[N],inv[N];
int popcount(int x){
    int cnt=0;
    for(;x;x&=(x-1))cnt++;
    return cnt;
}
LL ksm(LL a,int p){
    LL res=1;
    while(p){
        if(p&1)res=(res*a)%P;
        a=(a*a)%P,p>>=1;
    }
    return res;
}
LL A(int n,int m){
    return jc[n]*inv[n-m]%P;
}
int main(){
    read(n),read(m);
    Lim=(1<<n)-1,jc[0]=inv[0]=1;
    for(int i=1;i<=m;i++){
        int x,y;
        read(x),read(y);
        s[x][y]=s[y][x]=1;
    }
    for(int i=1;i<=n;i++)
    jc[i]=(jc[i-1]*i)%P,inv[i]=ksm(jc[i],P-2)%P;
    for(int i=1;i<=n;i++)w[i]=(1<<i-1);
    for(int i=1;i<=n;i++)
    for(int j=i+1;j<=n;j++)
    if(s[i][j])w[i]+=(1<<j-1),w[j]+=(1<<i-1);
    f[0][0]=1;
    for(int i=0;i<=Lim;i++)
    cnt[i]=popcount(i);
    for(int i=0;i<=Lim;i++)
    for(int k=1;k<=n;k++)
    if(((1<<k-1)&i)==0){
        int v=i|w[k];
        int x=cnt[w[k]]-cnt[i&w[k]]-1;
        int t=n-cnt[i]-1;
        for(int j=0;j<=n;j++)
        if(f[i][j])f[v][j+1]=(f[v][j+1]+f[i][j]*A(t,x)%P)%P;
    }
    for(int i=n;i>=0;i--)
    if(f[Lim][i]){
        printf("%lld\n",(f[Lim][i]*inv[n])%P);
        return 0;
    }
}

转载于:https://www.cnblogs.com/Romeolong/p/10058991.html

这个是完整源码 python实现 Flask,Vue 【python毕业设计】基于Python的Flask+Vue物业管理系统 源码+论文+sql脚本 完整版 数据库是mysql 本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发
源码地址: https://pan.quark.cn/s/a4b39357ea24 # SerialAssistant串口助手 下载地址: 本仓库release文件夹 在线下载:http://mculover666.cn/SerialAssistant.zip 功能说明 本项目是使用C# + WinForm框架编写的串口助手。 目前版本为2.0.0版本,拥有以下功能: 未打开串口时,自动扫描可用端口 接收数据支持文本或者HEX方式显示 支持接收数据加入时间戳 支持将当前接收数据保存为文件 支持发送文本数据或HEX数据 支持自动定时发送数据 支持从文件中(.txt, .json)加载数据到发送文本框 支持发送数据记录(不重复记录) ……欢迎加入更多功能 环境说明 VS2019 .NET Framework 4.5 教程 C#上位机开发(一)—— 了解上位机 C#上位机开发(二)—— Hello,World C#上位机开发(三)—— 构建SerialAssistant雏形 C#上位机开发(四)—— SerialAssistant功能完善 C#上位机开发(五)——SerialAssistant界面升级(WinForm界面布局进阶) C#上位机开发(六)——SerialAssistant功能优化(串口自动扫描功能、接收数据保存功能、加载发送文件、发送历史记录、打开浏览器功能、定时发送功能) C#上位机开发(七)—— 修改窗口图标和exe文件图标 C#上位机开发(八)—— 美化界面(给按钮添加背景) 更新日志 2018/6/3 完成串口属性设置,打开与关闭异常处理; 字符串发送功能; 字符串接收功能; 2018/6/4 完善串口扩展功能界面部分 2018/6/6 完善...
基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)内容概要:本文档标题为《基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)》,但实际内容并未围绕该主题展开具体论述,而是列举了大量与Matlab仿真相关的科研技术服务项目,涵盖智能优化算法、机器学习、路径规划、无人机应用、电力系统优化、信号处理等多个领域,并提供了相关资源的网盘下载链接。文档强调科研需逻辑缜密、善于借力与创新,建议按目录顺序阅读以避免迷失方向。真正关于CRISPR系统对抗耐药菌的研究内容缺失,标题与正文严重不符。; 适合人群:具备一定科研基础,熟悉Matlab编程,从事工程优化、生物信息、控制系统、电力系统、人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①获取各类科研问题的Matlab代码实现资源,如优化调度、预测建模、路径规划等;②复现高水平论文中的算法模型;③开展跨学科仿真研究时借鉴技术方案与代码框架;④利用提供的YALMIP等工具包进行优化问题求解。; 阅读建议:注意本文档标题与实际内容不符,重点应放在其所列出的技术服务范围和提供的网盘资源上,使用者可根据自身研究方向筛选相关内容,结合提供的代码实例进行学习与二次开发,同时注意甄别信息的有效性与准确性。
06-21
<think>我们正在查询与LOJ6279相关的编程题目或解决方案。LOJ(LibreOJ)是一个在线的评测系统,主要收录算法竞赛题目。根据题号6279,我们需要确定该题目的具体内容。由于我无法直接访问网络,我将基于已知信息进行推理。在算法竞赛中,LOJ的题目编号通常与特定的题目对应。题号6279可能对应一个特定的问题。根据常见的题目类型,我们可以推测它可能涉及数据结构或算法。然而,为了准确回答,我们可以尝试回忆或推断常见的LOJ题目。例如,LOJ6000系列题目多为数据结构题,如线段树、树状数组等。实际上,通过搜索记忆,我回想起LOJ6279是“数列分块入门3”(BlockArray3)题目。这是“分块”系列题目中的一题。题目描述:给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(即最大的小于x的数)。因此,用户需要的是关于LOJ6279题目的描述和解决方案。解决方案:由于题目要求分块处理,我们将数列分成若干块,每块大小为sqrt(n)。对于每个块,我们维护一个有序的数组(用于二分查找)以及一个加法标记(记录整个块被加了多少)。操作:1.区间加法:对于整块,直接更新加法标记;对于不完整的块,暴力更新元素值,然后重新排序该块(或者重新构建有序数组)。2.查询区间内小于x的前驱:遍历区间内的所有块。对于整块,在块的有序数组中二分查找小于(x-加法标记)的最大值;对于不完整的块,暴力遍历每个元素,判断是否小于x(注意加上加法标记)并更新最大值。代码实现(C++)示例:```cpp#include<iostream>#include<vector>#include<cmath>#include<algorithm>#include<climits>usingnamespacestd;constintMAXN=100010;constintBLOCK_SIZE=320;//约sqrt(MAXN)intn;vector<int>a;vector<int>block_add;//每块的加法标记vector<vector<int>>sorted_blocks;//每块的有序数组voidinit(){intblock_num=(n+BLOCK_SIZE-1)/BLOCK_SIZE;block_add.assign(block_num,0);sorted_blocks.resize(block_num);for(inti=0;i<n;i++){sorted_blocks[i/BLOCK_SIZE].push_back(a[i]);}for(inti=0;i<block_num;i++){sort(sorted_blocks[i].begin(),sorted_blocks[i].end());}}voidupdate_block(intblock_id){sorted_blocks[block_id].clear();intstart=block_id*BLOCK_SIZE;intend=min((block_id+1)*BLOCK_SIZE,n);for(inti=start;i<end;i++){sorted_blocks[block_id].push_back(a[i]);}sort(sorted_blocks[block_id].begin(),sorted_blocks[block_id].end());}voidadd(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;if(block_l==block_r){for(inti=l;i<=r;i++){a[i]+=c;}update_block(block_l);}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){a[i]+=c;}update_block(block_l);for(inti=block_l+1;i<block_r;i++){block_add[i]+=c;}for(inti=block_r*BLOCK_SIZE;i<=r;i++){a[i]+=c;}update_block(block_r);}}intquery(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;intans=-1;if(block_l==block_r){for(inti=l;i<=r;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}for(inti=block_l+1;i<block_r;i++){//在块i的有序数组中二分查找小于c-block_add[i]的最大值inttarget=c-block_add[i];autoit=lower_bound(sorted_blocks[i].begin(),sorted_blocks[i].end(),target);if(it!=sorted_blocks[i].begin()){it--;intval=*it+block_add[i];if(val>ans)ans=val;}}for(inti=block_r*BLOCK_SIZE;i<=r;i++){intval=a[i]+block_add[block_r];if(val<c){if(val>ans)ans=val;}}}returnans;}intmain(){cin>>n;a.resize(n);for(inti=0;i<n;i++){cin>>a[i];}init();for(inti=0;i<n;i++){intop,l,r,c;cin>>op>>l>>r>>c;l--;r--;//如果题目输入是1-indexed,则转换为0-indexedif(op==0){add(l,r,c);}else{cout<<query(l,r,c)<<endl;}}return0;}```注意:上述代码是示例代码,可能需要根据题目具体输入要求进行调整。§§相关问题§§1.LOJ6279题目的具体描述是什么?2.分块算法的时间复杂度是多少?3.除了分块,还有哪些方法可以解决LOJ6279?4.如何优化分块算法的常数?5.分块算法适用于哪些场景?</think>### LOJ 6279 题目分析与解决方案 **题目描述**:LOJ 6279 是 LibreOJ 上的 **"数列分块入门 3"**,属于分块算法的经典练习题。核心要求如下: - **操作 1**:区间 $[l, r]$ 内每个数加上值 $c$ - **操作 2**:查询区间 $[l, r]$ 内小于 $c$ 的**最大元素值**(即前驱),不存在时返回 $-1$ #### 分块算法设计 分块的核心思想是将数列划分为 $\sqrt{n}$ 大小的块,平衡暴力操作与批量处理。 ##### 关键数据结构 1. **块内有序数组**: - 每块维护一个排序后的数组,用于二分查找前驱。 - 示例:块 $B_i$ 的排序数组为 $S_i$。 2. **加法懒标记**: - 记录整块被加的总值 $add_i$(不影响块内有序性)。 ##### 操作实现 1. **区间加法($[l, r] + c$)**: - **整块**:直接更新懒标记 $add_i \gets add_i + c$,时间复杂度 $O(1)$。 - **碎块**:暴力修改元素值,并**重构有序数组**(排序),时间复杂度 $O(\sqrt{n} \log \sqrt{n})$。 2. **查询前驱($[l, r]$ 内 $< c$ 的最大值)**: - **整块**:在有序数组 $S_i$ 中二分查找 $c - add_i$ 的前驱,时间复杂度 $O(\log \sqrt{n})$。 - **碎块**:暴力遍历元素,检查 $a_j + add_i < c$ 并更新最大值,时间复杂度 $O(\sqrt{n})$。 #### 代码实现(C++) ```cpp #include <iostream> #include <vector> #include <cmath> #include <algorithm> #include <climits> using namespace std; const int MAXN = 100010; int n, block_size; vector<int> a; vector<int> add_tag; // 块的加法标记 vector<vector<int>> blocks; // 每块的有序数组 void init() { block_size = sqrt(n); int block_num = (n + block_size - 1) / block_size; add_tag.assign(block_num, 0); blocks.resize(block_num); for (int i = 0; i < n; i++) blocks[i / block_size].push_back(a[i]); for (int i = 0; i < block_num; i++) sort(blocks[i].begin(), blocks[i].end()); } void rebuild_block(int block_id) { blocks[block_id].clear(); int start = block_id * block_size; int end = min(start + block_size, n); for (int i = start; i < end; i++) blocks[block_id].push_back(a[i]); sort(blocks[block_id].begin(), blocks[block_id].end()); } void range_add(int l, int r, int c) { int block_l = l / block_size, block_r = r / block_size; if (block_l == block_r) { // 同一块内 for (int i = l; i <= r; i++) a[i] += c; rebuild_block(block_l); } else { // 左侧碎块 for (int i = l; i < (block_l + 1) * block_size; i++) a[i] += c; rebuild_block(block_l); // 中间整块 for (int i = block_l + 1; i < block_r; i++) add_tag[i] += c; // 右侧碎块 for (int i = block_r * block_size; i <= r; i++) a[i] += c; rebuild_block(block_r); } } int query_predecessor(int l, int r, int c) { int ans = -1; int block_l = l / block_size, block_r = r / block_size; // 左侧碎块暴力查询 for (int i = l; i < min(r + 1, (block_l + 1) * block_size); i++) { int val = a[i] + add_tag[block_l]; if (val < c && val > ans) ans = val; } // 中间整块二分查找 for (int i = block_l + 1; i < block_r; i++) { int target = c - add_tag[i]; auto it = lower_bound(blocks[i].begin(), blocks[i].end(), target); if (it != blocks[i].begin()) { it--; int val = *it + add_tag[i]; if (val < c && val > ans) ans = val; } } // 右侧碎块暴力查询 if (block_l != block_r) { for (int i = block_r * block_size; i <= r; i++) { int val = a[i] + add_tag[block_r]; if (val < c && val > ans) ans = val; } } return ans; } int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) cin >> a[i]; init(); for (int i = 0; i < n; i++) { int op, l, r, c; cin >> op >> l >> r >> c; l--; r--; // 转为0-indexed if (op == 0) range_add(l, r, c); else cout << query_predecessor(l, r, c) << endl; } return 0; } ``` #### 算法分析 - **时间复杂度**: - 单次修改/查询:$O(\sqrt{n} \log \sqrt{n})$(碎块排序主导)。 - 总操作 $m$ 次:$O(m \sqrt{n} \log n)$。 - **空间复杂度**:$O(n)$。 #### 优化技巧 1. **减少排序次数**: - 碎块修改时只重构受影响块的有序数组。 2. **块大小调整**: - 实测调整块大小为 $n^{0.6}$ 可能更快(需测试)。 #### 应用场景 分块算法适用于**强制在线**的区间问题(如 LOJ 的数列分块系列题),在 $O(\sqrt{n})$ 复杂度下平衡修改与查询[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值