TOJ-1321 The Brick Stops Here

本文探讨了一个关于铜砖混合的问题,通过动态规划解决客户购买不同类型的铜锌合金砖,以达到特定铜含量比例的需求。算法的目标是在满足铜浓度范围的前提下,找到最低总价格的砖组合。
You have been hired by several clients of a factory that manufactures brass bricks. Brass is an alloy of copper and zinc; each brick weighs 1000 grams, and the copper content of a brick can range from 1 to 999 grams. (Note that brass with less than 55% or more than 62% of copper is practically useless; however, this is irrelevant for this question) The factory manufactures, through various processes, different types of brick, each of which has a different copper concentration and price. It distributes a catalog of these types to its customers.

Your clients desire to buy a certain number (M) of bricks, which for, uh, religious reasons must be of different types. They will be melted together, and the resultant mixture must have a concentration of at least CMin and at most CMax grams of copper per kilogram. Their goal is to pick the M types of brick so that the mixture has the correct concentration and the price of the collection is minimized. You must figure out how to do this. M, CMin, and CMax will vary depending on the client.

Input

The first part of input consists of a line containing a number N (1 ≤ N ≤ 200), the number of brick types, and then N lines containing the copper concentration (between 1 and 999) and price (in cents) of each brick type. No brick costs more than 10 dollars.

The second part consists of a line containing a number C (1 ≤ C ≤ 100), the number of clients you are serving, followed by C lines containing M (1 ≤ M ≤ 20), CMin (1 ≤ CMin ≤ 999), and CMax (1 ≤ CMax ≤ 999) for each client.

All input numbers will be positive integers.

Output

Output consists of a line for each client containing the minimum possible price for which they can purchase bricks to meet their demands. If there is no way to match their specifications, output "impossible".

Sample Input

11
550 300
550 200
700 340
300 140
600 780
930 785
730 280
678 420
999 900
485 390
888 800
3
2 500 620
9 550 590
9 610 620

Sample Output

420
impossible
3635



Source: Waterloo Local Contest Jun. 19, 1999

dp过程:

dp[0][0] = 0;//dp[i][j]表示i块砖铜总量j最小价格 
        d = min(20,n);
        for(k=1;k<=n;k++){
            for(j=20000;j>=con[k];j--){
                for(i=1;i<=d;i++){
                    if(dp[i-1][j-con[k]]!=INF){
                        dp[i][j] = min(dp[i][j],dp[i-1][j-con[k]]+prc[k]);
                    }
                }
            }
        }

开始时先循环i后循环j,结果导致每个铜砖被重复使用。

全部代码:

#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <memory.h>
using namespace std;
const int INF=0x3f3f3f3f;
int con[202],prc[202],dp[22][20002];
int n,c,m,cmin,cmax;
int main(){
    int i,j,k,d;
    while(~scanf("%d",&n)){
        memset(dp,INF,sizeof(dp));
        for(i=1;i<=n;i++){
            scanf("%d%d",&con[i],&prc[i]);
        }
        dp[0][0] = 0;//dp[i][j]表示i块砖铜总量j最小价格 
        d = min(20,n);
        for(k=1;k<=n;k++){
            for(j=20000;j>=con[k];j--){
                for(i=1;i<=d;i++){
                    if(dp[i-1][j-con[k]]!=INF){
                        dp[i][j] = min(dp[i][j],dp[i-1][j-con[k]]+prc[k]);
                    }
                }
            }
        }
        /*for(i=0;i<=d;i++){
            for(j=0;j<=20000;j++){
                if(dp[i][j]==INF) continue;
                else printf("%d %d %d   ",i,j,dp[i][j]);
            }
            printf("\n");
        }*/
        scanf("%d",&c);
        while(c--){
            scanf("%d%d%d",&m,&cmin,&cmax);
            if(m>n)    printf("impossible\n");
            else {
                int ans = INF;
                int l = m*cmin;    int h = m*cmax;
                for(i=l;i<=h;i++){
                    if(dp[m][i]<ans){
                        ans = dp[m][i];
                    }
                }
                if(ans!=INF)    printf("%d\n",ans);
                else printf("impossible\n");
            }
        }
        
    }
    return 0; 
}

 

转载于:https://www.cnblogs.com/shenchuguimo/p/6358757.html

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值