2020年《GAN综述:算法、理论及应用》 论文地址: https://arxiv.org/pdf/2001.06937.pdf
部分内容来自网络
生成抵抗网络:
(缺图,后补)
目标函数
一、最原始的极大极小博弈
min G max D V ( D , G ) = E x ∼ p data ( x ) [ log D ( x ) ] + E z ∼ p z ( z ) [ log ( 1 − D ( G ( z ) ) ) ] . . \begin{array}{l} \min _{G} \max _{D} V(D, G)=E_{x \sim p_{\text {data }}(x)}[\log D(x)] +E_{z \sim p_{z}(z)}[\log (1-D(G(z)))]. \end{array}. minGmaxDV(D,G)=Ex∼pdata (x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]..
其中, l o g D ( x ) logD(x) logD(x)和 l o g ( 1 − D ( G ( x ) ) ) log(1-D(G(x))) log(1−D(G(x)))分别是交叉熵形式,形如 L = − [ y log y ^ + ( 1 − y ) log ( 1 − y ^ ) ] . L=-[y \log \hat{y}+(1-y) \log (1-\hat{y})]. L=−[ylogy^+(1−y)log(1−y^)].
对于一个固定的 G,给出了最优的判别器 D: D G ∗ ( x ) = p data ( x ) p data ( x ) + p g ( x ) . D_{G}^{*}(x)=\frac{p_{\text {data}}(x)}{p_{\text {data}}(x)+p_{g}(x)}. DG∗(x)=pdata(x)+pg(x)pdata(x).
然后可以重新化成形式如下:
C ( G ) = max D V ( D , G ) = E x ∼ p data [ log D G ∗ ( x ) ] + E z ∼ p z [ log ( 1 − D G ∗ ( G ( z ) ) ) ] = E x ∼ p data [ log D G ∗ ( x ) ] + E x ∼ p g [ log ( 1 − D G ∗ ( x ) ) ] = E x ∼ p data [ log p data ( x ) 1 2 ( p data ( x ) + p g ( x ) ) ] + E x ∼ p g [ 1 1 2 ( p data ( x ) + p g ( x ) ) ( x ) ] − 2 log 2. \begin{array}{l} C(G)=\max _{D} V(D, G) \\ =E_{x \sim p_{\text {data}}}\left[\log D_{G}^{*}(x)\right] \\ \quad+E_{z \sim p_{z}}\left[\log \left(1-D_{G}^{*}(G(z))\right)\right] \\ =E_{x \sim p_{\text {data}}}\left[\log D_{G}^{*}(x)\right]+E_{x \sim p_{g}}\left[\log \left(1-D_{G}^{*}(x)\right)\right] \\ =E_{x \sim p_{\text {data}}}\left[\log \frac{p_{\text {data}}(x)}{\frac{1}{2}\left(p_{\text {data}}(x)+p_{g}(x)\right)}\right] \\ \quad+E_{x \sim p_{g}}\left[\frac{\frac{1}{\frac{1}{2}}\left(p_{\text {data}}(x)+p_{g}(x)\right)}{(x)}\right]-2 \log 2. \end{array} C(G)=max

最低0.47元/天 解锁文章
889

被折叠的 条评论
为什么被折叠?



