【小米oj】 不一样的排序

线性筛+sort

 1 #define mm(a) memset(a,0,sizeof(a));
 2 #define max(x,y) (x)>(y)?(x):(y)
 3 #define min(x,y) (x)<(y)?(x):(y)
 4 #define Fopen freopen("1.in","r",stdin); freopen("m.out","w",stdout);
 5 #define rep(i,a,b) for(int i=(a);i<=(b);i++)
 6 #define per(i,b,a) for(int i=(b);i>=(a);i--)
 7 #include<bits/stdc++.h>
 8 typedef long long ll;
 9 #define PII pair<ll,ll>
10 using namespace std;
11 const int INF=0x3f3f3f3f;
12 const int MAXN=(int)2e6 + 5;
13 
14 struct node
15 {
16     int x;
17     int id;
18     int val;
19 }a[MAXN];
20 bool vis[MAXN];
21 int prime[MAXN];
22 
23 int t[MAXN],e[MAXN],n,k;
24 //geshu  fuzhu
25 void Init() {
26     int cnt=0;
27     t[1]=1;
28     for(int i=2; i<=MAXN; ++i) {
29         if(!vis[i]) {
30             prime[++cnt]=i;
31             t[i]=2;
32             e[i]=1;
33         }
34         for(int j=1; j<=cnt; ++j) {
35             if(i*prime[j]>MAXN) break;
36             vis[i*prime[j]]=true;
37             if(i%prime[j]==0) {
38                 t[i*prime[j]]=t[i]/(e[i]+1)*(e[i]+2);
39                 e[i*prime[j]]=e[i]+1;
40                 break;
41             } else {
42                 t[i*prime[j]]=t[i]*2;
43                 e[i*prime[j]]=1;
44             }
45         }
46     }
47 }
48 
49 
50 int main() {
51     Init();
52     while(~scanf("%d%d",&k,&n)) {
53         for(int i=1;i<=n;i++)scanf("%d",&a[i].x),a[i].id=i,a[i].val=t[a[i].x];
54         sort(a+1,a+1+n,[](node a,node b){
55             if(a.val!=b.val)return a.val<b.val;
56             return a.x<b.x;
57         });
58         printf("%d\n",a[k].x);
59     }
60     return 0;
61 }

 

转载于:https://www.cnblogs.com/dogenya/p/10815585.html

内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值