okvis论文解读

本文介绍了一种基于优化的单目视觉惯导融合SLAM系统vins-mono,利用定制的多尺度SSE优化Harris角点检测器与BRISK描述符,结合IMU融合实现关键帧的选择和部分边缘化,以处理非线性时间约束。

C. Keypoint Matching and Keyframe Selection

我们的处理流程采用定制的多尺度SSE优化Harris角点检测器与BRISK描述符提取相结合[12]。检测器通过逐渐抑制具有较弱分数的角来强制在图像中均匀的关键点分布,因为它们在较小距离处被检测到较强的角。描述符被提取沿着重力方向(投影到图像中)被提取,这可以通过紧密的IMU融合来观察。

对于关键帧选择,我们使用一个简单的启发式:如果匹配点所跨越的图像区域与所有检测到的点所跨越的区域之间的比率低于50%至60%,则该帧被标记为关键帧。

D.部分边缘化

非线性时间约束如何能够驻留在包含可能在时间上任意远距离的关键帧的有界优化窗口中并不明显。在下文中,我们首先提供边缘化的数学基础,即消除非线性优化中的状态,并将它们应用于视觉惯性SLAM。

vins-mono是一个基于优化的单目视觉惯导融合SLAM系统。

转载于:https://www.cnblogs.com/feifanrensheng/p/10165111.html

Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate Visual-Inertial Odometry or Simultaneous Localization and Mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that non-linear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual-inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochasic cloning sliding-window filter. This competititve reference implementation performs tightly-coupled filtering-based visual-inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值