汉诺塔算法
汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
后来,这个传说就演变为汉诺塔游戏,玩法如下:
- 有三根杆子A,B,C。A杆上有若干碟子
- 每次移动一块碟子,小的只能叠在大的上面
- 把所有碟子从A杆全部移到C杆上
以下实例演示了汉诺塔算法的实现:
public class MainClass {
public static void main(String[] args) {
int nDisks = 3;
doTowers(nDisks, 'A', 'B', 'C');
}
public static void doTowers(int topN, char from,
char inter, char to) {
if (topN == 1){
System.out.println("Disk 1 from "
+ from + " to " + to);
}else {
doTowers(topN - 1, from, to, inter);
System.out.println("Disk "
+ topN + " from " + from + " to " + to);
doTowers(topN - 1, inter, from, to);
}
}
}
结果:
Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C
* 斐波那契数列*
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368……
特别指出:第0项是0,第1项是第一个1。
这个数列从第三项开始,每一项都等于前两项之和。
public class MainClass {
public static long fibonacci(long number) {
if ((number == 0) || (number == 1))
return number;
else
return fibonacci(number - 1) + fibonacci(number - 2);
}
public static void main(String[] args) {
for (int counter = 0; counter <= 10; counter++){
System.out.printf("Fibonacci of %d is: %d\n",
counter, fibonacci(counter));
}
}
}
结果:
Fibonacci of 0 is: 0
Fibonacci of 1 is: 1
Fibonacci of 2 is: 1
Fibonacci of 3 is: 2
Fibonacci of 4 is: 3
Fibonacci of 5 is: 5
Fibonacci of 6 is: 8
Fibonacci of 7 is: 13
Fibonacci of 8 is: 21
Fibonacci of 9 is: 34
Fibonacci of 10 is: 55
阶乘
public class MainClass {
public static void main(String args[]) {
for (int counter = 0; counter <= 10; counter++){
System.out.printf("%d! = %d\n", counter,
factorial(counter));
}
}
public static long factorial(long number) {
if (number <= 1)
return 1;
else
return number * factorial(number - 1);
}
}
结果:
0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
本文介绍了汉诺塔算法的实现,并通过实例演示了如何解决这个问题。同时,文章还展示了如何用递归方法实现斐波那契数列和阶乘计算。
872

被折叠的 条评论
为什么被折叠?



