
TensorFlow Hands-on
Tensor Flow书的练习以及课后作业
没有出口的猎户座
这个作者很懒,什么都没留下…
展开
-
Chapater11:Training Deep Neural Networks
【代码】Chapater11:Training Deep Neural Networks。原创 2022-08-25 12:58:18 · 135 阅读 · 0 评论 -
Chapter 10 :Introduction to Artificial Neural Networks with Keras
【代码】Chapter 10 :Introduction to Artificial Neural Networks with Keras。原创 2022-08-24 13:09:32 · 369 阅读 · 0 评论 -
Chapter4:Traing Model
4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()5)np.random.randn()的输入通常为整数,但是如果为浮点数,则会自动直接截断转换为整数。#np.random.rand通过本函数可以返回一个或一组服从标准正态分布的随机样本值。3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵;2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵;原创 2022-08-23 12:57:33 · 406 阅读 · 0 评论 -
Chapter3 Classification(包括Precision/Recall)
一、MNIST用MNIST数据集做classificationfrom sklearn.datasets import fetch_openmlmnist = fetch_openml('mnist_784',version=1)mnist.keys()mnist keys的打印结果:dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details原创 2022-04-09 04:23:49 · 1488 阅读 · 0 评论 -
Chapter2 Exercises:End to end Machine Learning Project
Using this chapter’s housing dataset:【房价链接失效,没法跑】1. Try a Support Vector Machine regressor (sklearn.svm.SVR), with various hyperparameters such as kernel="linear" (with various values for the C hyperparameter) or kernel="rbf" (with various values for the原创 2022-02-04 13:47:15 · 442 阅读 · 0 评论 -
Chapter2:预测房价【原链接失效,没有任何数据-已解决,链接是好的】
import osimport tarfileimport urllibimport pandasimport pandas as pdimport urllib.request#fetch dataDOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"HOUSING_PATH = os.path.join("datasets","housing")HOUSING_URL = DOW.原创 2022-02-04 13:25:19 · 980 阅读 · 1 评论 -
Chapter 1 Exercises: The Machine Learning Landscape
ExercisesIn this chapter we have covered some of the most important concepts in MachineLearning. In the next chapters we will dive deeper and write more code, but before wedo, make sure you know how to answer the following questions:1. How would you d原创 2022-01-24 14:02:12 · 874 阅读 · 0 评论 -
Chapter1 GDP的预测和计算
#chapter1import osimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdimport sklearn.linear_modelimport csv#load dataoecd_bli = pd.read_csv(r'D:\Github_Blog\handson-ml2\datasets\lifesat\oecd_bli_2015.csv',thousands=',')gdp_per_c.原创 2022-01-24 03:37:30 · 823 阅读 · 0 评论