LeetCode 1143. 最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。
思路:典型动态规划,
dp[i][j]定义:text1前i个字符和text2前j个字符的最长公共子序列
base case:其中任何一个为空,dp[i][0]=dp[0][j]=0
状态转移方程:text[i]==text[j]时. dp[i][j]=dp[i-1][j-1]+1
text[i]!=text[j]时, dp[i][j]=max(dp[i][j-1],dp[i-1][j])
看代码
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m = len(text1)
n = len(text2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])
return dp[-1][-1]
本文详细解析了LeetCode1143题——求解两字符串的最长公共子序列长度的问题,通过动态规划方法,提供了清晰的思路与代码实现。
13万+

被折叠的 条评论
为什么被折叠?



