[NLP]使用NMF模型提取文章topic

本文介绍如何利用sklearn工具包通过TF-IDF预处理,应用NMF模型来提取文章的主题。首先回顾TF-IDF的概念,包括TF(Term Frequency)和IDF(Inverse Document Frequency)。接着,展示实现代码并展示输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的目标是使用sklearn工具包实现自动提取文章主题。

首先补充一下tf-idf的基本知识:

TF-IDF概述

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,互联网上的搜索引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。

TF

TF: Term Frequency, 用于衡量一个词在一个文件中的出现频率。因为每个文档的长度的差别可以很大,因而一个词在某个文档中出现的次数可能远远大于另一个文档,所以词频通常就是一个词出现的次数除以文档的总长度,相当于是做了一次归一化。

TF(t)=(t)/(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值