1151 LCA in a Binary Tree-PAT甲级

本文详细介绍了如何在二叉树中寻找两个节点的最近公共祖先(LCA),通过输入二叉树的中序和前序遍历序列,构建二叉树并找到指定节点的LCA。代码实现使用了倍增解法,通过更新结点的父节点和深度值,高效地解决了LCA问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99

Sample Output:

LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

最近公共祖先(LCA)利用倍增解法来求解,在建树的过程中更新结点的父节点以及深度值。

满分代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=10005;
struct tree{
	int data;
	tree *lchild=NULL;
	tree *rchild=NULL;
};
struct node{
	//结点类
	int data,father=-1,level;//权值,父节点在pre中的下标、深度 
	node(){}
	node(int d,int f,int l){
		data=d;
		father=f;
		level=l;
	}
};
map<int,int>mp;//建立值在前序序列中的下标 
node pre[N];
int m,n,in[N];
tree *create(int prel,int prer,int inl,int inr,int father,int level){
	if(prel>prer){
		return NULL;
	}
	tree *root=new tree;
	root->data=pre[prel].data;
	int k;
	for(k=inl;k<=inr;k++){
		if(in[k]==pre[prel].data)
			break;
	}
	int numleft=k-inl;
	pre[prel]=node(pre[prel].data,father,level);
	root->lchild=create(prel+1,prel+numleft,inl,k-1,prel,level+1);//递归处理左子树 
	root->rchild=create(prel+numleft+1,prer,k+1,inr,prel,level+1);//递归处理右子树 
    return root;
}
int main(){
	scanf("%d%d",&m,&n);
	for(int i=0;i<n;i++){
		scanf("%d",&in[i]);
	}
	for(int i=0;i<n;i++){
		scanf("%d",&pre[i].data);
		mp[pre[i].data]=i;
	}
	tree *root=create(0,n-1,0,n-1,-1,0);
	for(int i=1;i<=m;i++){
		int x,y;
		scanf("%d%d",&x,&y);
		int idx,idy;
		if(mp.find(x)==mp.end()) idx=-1;
		else idx=mp[x];
		if(mp.find(y)==mp.end()) idy=-1;
		else idy=mp[y];
		if(idx==-1&&idy==-1){
			printf("ERROR: %d and %d are not found.\n",x,y);
		}else if(idx==-1){
			printf("ERROR: %d is not found.\n",x);
		}else if(idy==-1){
			printf("ERROR: %d is not found.\n",y);
		}else{
			int flag=1;//flag=1表示x的深度比b的深度大
			if(pre[idx].level<pre[idy].level){
				swap(idx,idy);//令idx指向更深的深度
				flag=0; 	
			} 
			while(pre[idx].level>pre[idy].level){
				idx=pre[idx].father;
			}
			if(idx==idy){
				printf("%d is an ancestor of %d.\n",pre[idy].data,flag?x:y);
			}else{
				while(idx!=idy){
					//二者同时向上调整;
					idx=pre[idx].father;
					idy=pre[idy].father; 
				}
				printf("LCA of %d and %d is %d.\n",x,y,pre[idx].data);
			}
		}
		
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值