Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
Sample Output:
4 1 6 3 5 7 2
简单的二叉树的重建与遍历,利用后序序列与中序序列进行二叉树的重建,利用层次遍历来输出最后的结果
套用模板即可
满分代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=35;
int post[N],in[N];
int n;
struct node{
int data;
node *lchild=NULL;
node *rchild=NULL;
};
node *create(int postl,int postr,int inl,int inr){
if(postl>postr){
return NULL;
}
node *root=new node;//新建一个结点
root->data=post[postr];
int k;
for(k=inl;k<=inr;k++){
if(in[k]==post[postr])//在中序遍历中找到对应的根节点的位置
break;
}
int numleft=k-inl;//左子树的结点的个数
root->lchild=create(postl,postl+numleft-1,inl,k-1);
root->rchild=create(postl+numleft,postr-1,k+1,inr);
return root;
}
void layer_order(node *root){
queue<node *>q;//队列里面存的是结点的地址
q.push(root);
int flag=0;
while(!q.empty()){
node *now=q.front();
q.pop();
if(flag) cout<<" ";
flag=1;
cout<<now->data;
if(now->lchild!=NULL){
q.push(now->lchild);
}
if(now->rchild!=NULL){
q.push(now->rchild);
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
cin>>post[i];
for(int i=1;i<=n;i++)
cin>>in[i];
node *root=create(1,n,1,n);
layer_order(root);
return 0;
}