repeat vector and return_sequence in Keras

本文探讨了Seq2Seq模型中Return Sequences与Repeat Vector的应用场景。具体而言,Return Sequences返回所有历史状态输出,适用于计算注意力权重等场景;而Repeat Vector则重复编码器的最后一项输出,适合快速实现无教师强迫训练。

 

 

Essentially, return_sequences=True returns all the outputs the encoder observed in the past,

where RepeatVector repeats the very last output of the encoder

 

some tips for the use of the two statements:

one example is machine translation. For example, if you have a seq2seq model and you don't want to use teacher forcing and want a quick and dirty solution, you can pass in the last state of the encoder RNN (last blue box) using RepeatVector and return_sequences=False. But if you are to compute attention weights for the encoder states, you will need to use return_sequences=True as you need all encoder states to compute attention weights. 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值