MT【224】反解系数

(2011安徽省赛)
$f(x)=ax^3+bx+c(a,b,c\in R),$当$0\le x \le 1$时,$0\le f(x)\le 1$,求$b$的可能的最大值.


提示:取三个点$f(0),f(1),f(\dfrac{\sqrt{3}}{3})$,反解系数得

$2\sqrt{3}b=9f(\dfrac{\sqrt{3}}{3})-\sqrt{3}f(1)-(9-\sqrt{3})c\le9 $得$b\le\dfrac{3\sqrt{3}}{2}$
注:关键的$\dfrac{\sqrt{3}}{3}$由图像可得.
方法2:$f(0)=c,f(1)=a+b+c,f(t)=at^3+bt+c,(0<t<1)$,
得$(t-t^3)b=f(t)-t^3f(1)-(1-t^3)f(0)\le f(t)\le1$恒成立.
故$b\le \left(\dfrac{1}{t-t^3}\right)_{min}$故$b\le \dfrac{3\sqrt{3}}{2}$当$c=0,t=\dfrac{\sqrt{3}}{3}$时取到.

转载于:https://www.cnblogs.com/mathstudy/p/9749565.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值