MT【223】二次函数最大最小

若函数$f(x)=ax^2+20x+14(a>0)$对任意实数$t$,在闭区间$[t-1,t+1]$上总存在两实数$x_1,x_2$,使得$|f(x_1)-f(x_2)|\ge8$成立,则实数$a$的最小值为____


解答:记$h(t)=\max\limits_{x_1,x_2}\{|f(x_1)-f(x_2)|\}$,由题意$h(t)_{min}\ge8$
$\because 2a=f(t+1)+f(t-1)-2f(t)\le 2f(x)_{max}-2f(x)_{min}=2h(t),\therefore h(t)_{min}= a\ge8$

注:本题在很多模拟题中出现,但目前市面上的参考答案里笔者没有发现一种方法比我这里展现的在不失严格性的前提下更简洁.

转载于:https://www.cnblogs.com/mathstudy/p/9720434.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值