https://pintia.cn/problem-sets/994805342720868352/problems/994805351814119424
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
致谢:https://blog.youkuaiyun.com/liuchuo/article/details/53572051(有改动)
题目大意
给出一个图,判断给定的路径是不是哈密尔顿路径(遍历每个顶点的简单回路)。
简单回路的定义(摘自百度百科):图的顶点序列中,除了第一个顶点和最后一个顶点相同外,其余顶点不重复出现的回路叫简单回路。或者说,若通路或回路不重复地包含相同的边,则它是简单的。
分析
1.设置falg1 判断节点是否多走、少走、或走成环
2.设置flag2 判断这条路能不能走通(这一点比较坑,如果不写会有个点过不了)
3.当falg1、flag2都为1时是哈密尔顿路径,否则不是
#include <iostream>
#include <set>
#include <vector>
using namespace std;
int main() {
int n, m, cnt, k, a[210][210] = {0};
cin >> n >> m;
for(int i = 0; i < m; i++) {
int t1, t2;
scanf("%d%d", &t1, &t2);
a[t1][t2] = a[t2][t1] = 1;
}
cin >> cnt;
while(cnt--) {
cin >> k;
vector<int> v(k);
set<int> s;
int flag1 = 1, flag2 = 1;
for(int i = 0; i < k; i++) {
scanf("%d", &v[i]);
s.insert(v[i]);
}
if(s.size() != n || k - 1 != n || v[0] != v[k-1]) flag1 = 0;
for(int i = 0; i < k - 1; i++)
if(a[v[i]][v[i+1]] == 0) flag2 = 0;
printf("%s",flag1 && flag2 ? "YES\n" : "NO\n");
}
return 0;
}