深度学习

李航深入探讨了深度学习在复杂模式识别上的局限,并提供了从入门到进阶的学习建议。强调数学基础、数据处理经验和广泛积累的重要性。推荐了Andrew Ng的机器学习讲座作为入门教材,同时指出《统计学习方法》一书适合有一定基础的人士。建议初学者利用网上资源进行有效学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 诺亚方舟实验室李航:深度学习还局限在复杂的模式识别上

    李航关于机器学习的入门和进阶的建议

    机器学习的本质是“数学化的数据学”。所以,对机器学习技术的掌握,首先需要有好的数学基础,拥有足够的概率统计、计算理论、信息理论的知识;其次需要对数据处理有丰富的经验,经历足够多的开发、实验、观察。因为机器学习涉及的面非常广,所以需要一步一步地积累,不断地学习与钻研,这对初学者与专业人员都是一样的。我也是在这样鞭策自己。

    机器学习的入门教材,我觉得最好的是Andrew Ng的机器学习讲座,他讲得确实很好,把重要的、基本的概念全部覆盖了,而且内容准确与清晰。中文的教材,据说周志华老师将出版一本入门的书,大家可以期待。

    我写的《统计学习方法》并不是针对初学者的,目的是把最基本最核心的概念整理出来,让大家可以随时学习、参考,特别是对做应用的人。是工具书的定位,对有一定基础的人来说,可以成为入门书,但不适合所有人。

    我自己经常参考的,统计学方面Hastie、Tibshirani 、Friedman的书,机器学习方面Bishop的书,信息理论是Cover与Thomas的书,都是领域的权威。机器学习领域太广,不太可能有一本书满足所有人的需求,大家可以根据自己的情况,有选择地学习。另外,现在网上有大量的学习资料,论文、书籍、代码、讲座、博客,大家都可以去有效地利用。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值