pytorch之提取层结构
代码等来自廖星宇书上的廖星宇,有问题还不会解决系列
# -*- coding: utf-8 -*-
import torch
from torch import nn
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
layer1 = nn.Sequential()
layer1.add_module('conv1', nn.Conv2d(3, 32, 3, 1, padding=1))
layer1.add_module('relu1', nn.ReLU(True))
layer1.add_module('pool1', nn.MaxPool2d(2, 2))
self.layer1 = layer1
layer2 = nn.Sequential()
layer2.add_module('conv2', nn.Conv2d(32, 64, 3, 1, padding=1))
layer2.add_module('relu2', nn.ReLU(True))
layer2.add_module('pool2', nn.MaxPool2d(2, 2))
self.layer2 = layer2
layer3 = nn.Sequential()
layer3.add_module('conv3', nn.Conv2d(64, 128, 3, 1, padding=1))
layer3.add_module('relu3', nn.ReLU(True))
layer3.add_module('pool3', nn.MaxPool2d(2, 2))
self.layer3 = layer3
layer4 = nn.Sequential()
layer4.add_module('fc1', nn.Linear(2048, 512))
layer4.add_module('fc_relu1', nn.ReLU(True))
layer4.add_module('fc2', nn.Linear(512, 64))
layer4.add_module('fc_relu2', nn.ReLU(True))
layer4.add_module('fc3', nn.Linear(64, 10))
self.layer4 = layer4
def forward(self, x):
conv1 = self.layer1(x)
conv2 = self.layer2(conv1)
conv3 = self.layer3(conv2)
fc_input = conv3.view(conv3.size(0), -1)
fc_output = self.layer4(fc_input)
return fc_output
model = SimpleCNN()
# print(model)
# 提取网络结构
new_model = nn.Sequential(*list(model.children())[: 2])
# print(new_model)
# 想要得到卷积层
# conv_model = nn.Sequential(model.children())
for layer in model.named_modules():
# print(layer[0], layer[1])
if isinstance(layer[1], nn.Conv2d):
# conv_model.add_module(layer[0], layer[1])
#说实话,我实在不知道这个怎么弄,不会定义 conv_model,只能直接输出卷积层希望大佬告知
print(layer[0], layer[1])