简单粗暴地入门机器学习

本文为初学者提供了一条简单粗暴的机器学习入门路径。首先明确了为何学习机器学习、机器学习与人工智能、数据科学之间的关系,然后给出了学习路线,包括选择Python作为编程语言、推荐的课程和书籍、自然语言处理基础、实践项目以及持续学习的建议。同时,针对学习过程中可能遇到的数学障碍提出了应对方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有很多小伙伴问过我零基础要怎么入门机器学习或者人工智能,今天来提炼一下,方便志同道合的朋友们参考。

记得我刚入此山洞准备修炼的时候,就 Google 了好多这类的问题,那时候觉得大家的建议好多呀,这条路看起来真长,那么多东西要学,那么多书要看,那么多有用的课程要学。

现在我可以就自己走过的坑坑包包来推荐一条简单粗暴的路径。


[step 1: 方向]

在行动之前,先想好这几个最基本的问题,如果自己想不全都可以去搜一下,知乎上很多大拿的回答:

--1.为什么要学习机器学习或者人工智能呢?

我的话,很实在地说,就是不想被淘汰呀!最开始就是这么一个感觉。
官方一点的话,就是可以提高效率呀。
广泛的需求我并没有去想,只是想解决一下自己的需求。
譬如,不想做家务,就弄个机器人给我做;不想做琐事,就弄个智能助理给我做。

所以大家在开始入洞之前,也要先想几分钟这个问题:

eg:是想做数据科学还是人工智能开发呢?
if Data Science:就多做 kaggle 上偏分析的项目
if AI:再想想是自然语言处理还是图像识别呢?

我觉得 NLP 和 CV 是最基础的技术,AI 主要还是看应用领域,现在比较火的:自动驾驶,聊天机器人,

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值