Sklearn 快速入门

本文是Sklearn的快速入门教程,介绍了Sklearn的基本概念,包括分类、回归、聚类等机器学习方法。文章阐述了选择模型的流程,并通过Iris数据集展示了模型的应用,包括数据准备、模型训练和预测过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习资料:大家可以去莫烦的学习网站学到更多的知识。

本文结构:
  • Sklearn 简介
  • 选择模型流程
  • 应用模型

Sklearn 简介

Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一.

Sklearn 包含了很多种机器学习的方式:

  • Classification 分类
  • Regression 回归
  • Clustering 非监督分类
  • Dimensionality reduction 数据降维
  • Model Selection 模型选择
  • Preprocessing 数据预处理

选择模型流程

学习 Sklearn 时,不要直接去用,先了解一下都有什么模型方法,然后选择适当的方法,来达到你的目标。

Sklearn 官网提供了一个流程图,蓝色圆圈内是判断条件,绿色方框内是可以选择的算法:

从 START 开始,首先看数据的样本是否 >50<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值