TensorFlow-7-TensorBoard Embedding可视化

本文介绍了如何使用 TensorBoard 的 Embedding Projector 对高维数据进行可视化,特别是针对自然语言处理的 embeddings。通过设置 embedding tensor、保存模型变量、关联元数据等步骤,展示了在 MNIST 数据集上的应用实例,帮助理解如何利用 PCA 和 T-SNE 方法投影数据,并解决可能遇到的错误问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习资料
https://www.tensorflow.org/get_started/summaries_and_tensorboard

今天来看 TensorBoard 的一个内置的可视化工具 Embedding Projector, 是个交互式的可视化,可用来分析诸如 embeddings 的高维数据。
embedding projector 将从你的 checkpoint 文件中读取 embeddings。
默认情况下,embedding projector 会用 PCA 主成分分析方法将高维数据投影到 3D 空间, 还有一种投影方法是 T-SNE。

主要就是通过3步来实现这个可视化:

1) Setup a 2D tensor that holds your embedding(s).

embedding_var = tf.Variable(....)

2) Periodically save your model variables in a checkpoint in LOG_DIR.

saver = tf.train.Saver()
saver.save(session, os.path.join(LOG_DIR, "model.ckpt"), step)

3) (Optional) Associate metadata with your embedding.


本节官方教程没有给出完整的例子,这里用 MNIST 举一个简单的例子。

1. 引入 projector,data,定义 path:

%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os

from tensorflow.contrib.tensorboard.plugins import projector
from tensorflow.examples.tutorials.mnist import input_data

LOG_DIR = 'minimalsample'
NAME_TO_VISUALISE_V
Embedding ProjectorEmbedding Projector 是一款用于交互式可视化和高维数据分析的网页工具,作为 TensorFlow 的一部分,能带来类似 A.I. Experiment 的效果。同时,谷歌也在 projector.tensorflow.org 放出了一个可以单独使用的版本,让用户无需安装和运行 TensorFlow 即可进行高维数据的可视化。介绍探索嵌入(embeddings)训练机器学习系统所需的数据一开始的形式是计算机无法直接理解的。为了将这些我们人类能够自然而然理解的东西(如:话语、声音或视频)翻译成算法能够处理的形式,我们会使用到嵌入(embeddings)——一种获取了数据的不同方面(即:维度 dimension)的数学向量表征。比如说,在一个语言嵌入中,相似的词会被映射到彼此相近的点。降维的方法Embedding Projector 提供了三种常用的数据降维(data dimensionality reduction)方法,这让我们可以更轻松地实现复杂数据的可视化,这三种方法分别是 PCA、t-SNE 和自定义线性投影(custom linear projections):PCA 通常可以有效地探索嵌入的内在结构,揭示出数据中最具影响力的维度。t-SNE 可用于探索局部近邻值(local neighborhoods)和寻找聚类(cluster),可以让开发者确保一个嵌入保留了数据中的所有含义(比如在 MNIST 数据集中,可以看到同样的数字聚类在一起)。自定义线性投影可以帮助发现数据集中有意义的「方向(direction)」,比如一个语言生成模型中一种正式的语调和随意的语调之间的区别——这让我们可以设计出更具适应性的机器学习系统 标签:Tensorflow
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值