[Leetcode] 50 - Pow(x, n)

本文介绍了一种在C++中计算任意基数x的n次幂的高效方法,通过位运算简化了指数处理过程,特别关注了特殊情形如0, 1, -1,以及负指数和零指数的情况。

原题链接:https://oj.leetcode.com/problems/powx-n/


1. 首先处理特殊情况,比如0,1,-1

2. 关于普遍情况,考虑x^7 = x^(4 + 2 + 1),注意4,2,1都是2的n次方,所以转化为((x ^ 2) ^ 2) * (x ^ 2) * (x)。更加直观来看,我们可以将指数7看为二进制表示111,每一位从右到左对应的是x ^ 4,x ^ 2,x ^ 1。所以我们可以采取逐步位移指数的方法来计算结果,每次检查当前指数最低位是否为1,是则将之前结果乘以当前的base,每次循环结尾右移,然后计算出下一次的新的base。


class Solution {
public:
    double pow(double x, int n) {
        if (n == 0) return 1;
        if (x == 0) return 0;
        if (x == 1) return 1;
        if (x == -1) {
            return (n % 2 ? -1 : 1);
        } 
        if (n < 0) return 1.0 / pow(x, -n);
        
        double base = x;
        
        double res = 1;
        while (n) {
            if (n & 1) {
                res *= base;
            }
            base *= base;
            n >>= 1;
        }
        
        return res;
    }
};


**项目名称:** 基于Vue.js与Spring Cloud架构的博客系统设计与开发——微服务分布式应用实践 **项目概述:** 本项目为计算机科学与技术专业本科毕业设计成果,旨在设计并实现一个采用前后端分离架构的现代化博客平台。系统前端基于Vue.js框架构建,提供响应式用户界面;后端采用Spring Cloud微服务架构,通过服务拆分、注册发现、配置中心及网关路由等技术,构建高可用、易扩展的分布式应用体系。项目重点探讨微服务模式下的系统设计、服务治理、数据一致性及部署运维等关键问题,体现了分布式系统在Web应用中的实践价值。 **技术架构:** 1. **前端技术栈:** Vue.js 2.x、Vue Router、Vuex、Element UI、Axios 2. **后端技术栈:** Spring Boot 2.x、Spring Cloud (Eureka/Nacos、Feign/OpenFeign、Ribbon、Hystrix、Zuul/Gateway、Config) 3. **数据存储:** MySQL 8.0(主数据存储)、Redis(缓存与会话管理) 4. **服务通信:** RESTful API、消息队列(可选RabbitMQ/Kafka) 5. **部署与运维:** Docker容器化、Jenkins持续集成、Nginx负载均衡 **核心功能模块:** - 用户管理:注册登录、权限控制、个人中心 - 文章管理:富文本编辑、分类标签、发布审核、评论互动 - 内容展示:首页推荐、分类检索、全文搜索、热门排行 - 系统管理:后台仪表盘、用户与内容监控、日志审计 - 微服务治理:服务健康检测、动态配置更新、熔断降级策略 **设计特点:** 1. **架构解耦:** 前后端完全分离,通过API网关统一接入,支持独立开发与部署。 2. **服务拆分:** 按业务域划分为用户服务、文章服务、评论服务、文件服务等独立微服务。 3. **高可用设计:** 采用服务注册发现机制,配合负载均衡与熔断器,提升系统容错能力。 4. **可扩展性:** 模块化设计支持横向扩展,配置中心实现运行时动态调整。 **项目成果:** 完成了一个具备完整博客功能、具备微服务典型特征的分布式系统原型,通过容器化部署验证了多服务协同运行的可行性,为云原生应用开发提供了实践参考。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### C语言实现 以下提供两种C语言实现`pow(x, n)`的代码: #### 递归实现 ```c double myPow(double x, int n){ if (n == 0) return 1.0; if (n == 1) return x; if (n == -1) return 1.0 / x; double half = myPow(x, n / 2); double odevity = myPow(x, n % 2); return odevity * half * half; } ``` 此代码通过递归调用自身来计算`x`的`n`次幂,对于`n`为0、1、 - 1的情况直接返回结果,对于其他情况,将`n`分解为两部分计算,最后相乘得到结果[^2]。 #### 另一种递归实现 ```c double myPow(double x, int n){ if(n == 0 || x == 1){ return 1; } if(n < 0){ return 1/(x*myPow(x,-(n+1))); } if(n % 2 == 0){ return myPow(x*x,n/2); } else{ return x*myPow(x*x,(n - 1)/2); } } ``` 该代码对于`n`为0或者`x`为1的情况直接返回1;当`n`为负数时,将其转换为正数来处理;根据`n`的奇偶性进行不同的递归计算,奇数时多乘一个`x`,偶数时对`x`平方后`n`除2继续递归[^3]。 ### 分析总结 本题是要实现计算`x`的`n`次幂函数`pow(x, n)`。如果直接将`n`个`x`相乘,时间复杂度为$O(n)$,会超时。本题的核心思路是将`n`分解成二进制的数,然后预处理`x`的二进制次方。若`n`的二进制的第`k`位是1,则答案可以乘上`x`的$2^k$次方,而计算`x`的$2^k$次方,只需每次将自身做平方即可,这样可以将时间复杂度优化到$O(log n)$ [^4]。 递归实现的代码逻辑较为清晰,易于理解,但会存在函数调用的开销。在处理负数指数时需要额外的转换操作。同时要注意整数溢出的问题,在处理`n`为`INT_MIN`时可能会出现问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值