hdu 5478 Can you find it

本文探讨了给定特定条件下,寻找满足模数方程的所有有序数对(a, b)的方法。通过假设n=1来简化问题,并使用快速幂运算进行求解验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Can you find it

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1967    Accepted Submission(s): 832


Problem Description
Given a prime number C(1C2×105), and three integers k1, b1, k2 (1k1,k2,b1109). Please find all pairs (a, b) which satisfied the equation ak1n+b1 + bk2nk2+1 = 0 (mod C)(n = 1, 2, 3, ...).
 

Input
There are multiple test cases (no more than 30). For each test, a single line contains four integers C, k1, b1, k2.
 

Output
First, please output "Case #k: ", k is the number of test case. See sample output for more detail.
Please output all pairs (a, b) in lexicographical order. (1a,b<C). If there is not a pair (a, b), please output -1.
 

Sample Input
23 1 1 2
 

Sample Output
Case #1: 1 22
 

思路:
因为对于所有n都成立,所以先假设n==1,
便有(a^(k1+b1)+b)%C==0
枚举a,得出b的解,对于每对(a,b),验证是否对所有n都成立。
将n==2带入,若成立,则所有n都成立(我猜的,不要问为什么)。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll C, k1, k2, b1;
ll pow1(ll a, ll b, ll mod)
{
    ll r = 1;
    while (b)
    {
        if (b & 1) r = r * a % mod;
        a = a * a % mod;
        b /= 2;
    }
    return r;
}
int main()
{
    int cas = 0;
    while (~scanf("%lld%lld%lld%lld", &C, &k1, &b1, &k2))
    {
        bool bb=0;
        printf("Case #%d:\n", ++cas);
        for (ll i = 1; i < C; i++)
        {
            ll a = pow1(i, k1 + b1, C);
            ll b = C - a;
            if (b >= 1 && b < C)
            {
                if ((pow1(i, 2 * k1 + b1, C) + pow1(b, k2 + 1, C)) % C == 0)
                    printf("%lld %lld\n", i, b),bb=1;
            }
        }
        if(!bb)printf("-1\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值