POJ 1458 Common Subsequence(最长公共子序列问题)

本文介绍了一种解决最长公共子序列问题的经典算法,并提供了两种实现方式:一种使用二维动态规划表,另一种通过优化空间复杂度减少内存消耗。适用于对算法和数据结构有一定了解的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions:56465 Accepted: 23531

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2

0

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string.h>
int dp[1002][1002];
using namespace std;
int main()
{
	char a[1002], b[1002];
	while (scanf("%s%s",&a,&b)!=EOF)
	{
		int L1 = strlen(a), L2 = strlen(b);
		memset(dp, 0, sizeof(dp));
		for (int i = L1; i >= 1; i--)
			a[i] = a[i - 1];
		for (int i = L2; i >= 1; i--)
			b[i] = b[i - 1];
		for (int i = 1; i <= L1; i++)
		{
			for (int j = 1; j <= L2; j++)
			{
					dp[i][j] = max(dp[i][j-1],dp[i-1][j]);
					if (a[i] == b[j])
						dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
			}
		}
		printf("%d\n", dp[L1][L2]);
	}
	return 0;
}
优化空间复杂度

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string.h>
int dp[2][1002];
using namespace std;
int main()
{
	char a[1002], b[1002];
	while (scanf("%s%s",&a,&b)!=EOF)
	{
		int L1 = strlen(a), L2 = strlen(b);
		memset(dp, 0, sizeof(dp));
		for (int i = L1; i >= 1; i--)
			a[i] = a[i - 1];
		for (int i = L2; i >= 1; i--)
			b[i] = b[i - 1];
		for (int i = 1; i <= L1; i++)
		{
			for (int j = 1; j <= L2; j++)
			{
					dp[i&1][j] = max(dp[i&1][j-1],dp[(i-1)&1][j]);
					if (a[i] == b[j])
						dp[i&1][j] = max(dp[i&1][j], dp[(i - 1)&1][j - 1] + 1);
			}
		}
		printf("%d\n", max(dp[0][L2],dp[1][L2]));
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值