Exponentiation

本文介绍了一种解决计算大数幂的精确值问题的方法,通过解析输入的大数基数和指数,采用字符串处理和数学算法,实现了高精度的计算过程。文章提供了完整的C++代码示例,展示了如何进行大数乘法和结果处理,确保了计算结果的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999) and n is an integer such that $0 < n \le 25$.

Input

The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.

Output

The output will consist of one line for each line of input giving the exact value of Rn. Leading zeros and insignificant trailing zeros should be suppressed in the output.

Sample Input

95.123 12
0.4321 20
5.1234 15
6.7592  9
98.999 10
1.0100 12

Sample Output

548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201

HINT

#include<iostream>
#include<string.h>
using namespace std;
int main()
{
	char str[1000],a[1000],a1[1000];
	int c;
	int n,i,j,k,t,x,num,t1,t2,y,y1,y2;
	while(cin>>str>>n)
	{
	
		x=0;num=0;
		t=strlen(str);
		for(i=0;i<t;i++)
		{
			if(str[i]=='.')
			{
				num=t-1-i;
				i++;
			}
			a[x]=str[i];
			a1[x++]=str[i];
		}
		a[x]='\0';
		a1[x]='\0';
		num*=n;
		int x1=x;
		for(i=0;i<n-1;i++)
		{	
			int sum[1000]={0};
			t1=999;t2=999;
			for(j=x-1;j>=0;j--)
			{
				for(k=x1-1;k>=0;k--)
					sum[t1--]+=((a[j]-'0')*(a1[k]-'0'));
				t2--;
			    t1=t2;
			}
		    c=0;
			for(y=999;y>=0;y--)
			{
				sum[y]+=c;
				c=0;
				if(sum[y]>9)
				{
					c=sum[y]/10;
					sum[y]=sum[y]%10;
				}
			}
			for(y1=0;y1<1000;y1++)
			{
				if(sum[y1]!=0)
					break;
			}
			x1=0;
			for(y2=y1;y2<1000;y2++)
				a1[x1++]=sum[y2]+'0';
			a1[x1]='\0';
		}
		if(num==0)
			cout<<a1<<endl;
		else
		{
			t=strlen(a1);
			if(a1[t-1]=='0')//若(2.0, 2)则输出4而不是4.00,多余的零去掉
			{
				for(i=t-1;i>=0;i--)
				{
					if(a1[i]!='0')
						break;
					num--;//小数点的位数
				}
				t=i+1;
			}
			for(i=0;i<t-num;i++)
				cout<<a1[i];//输出小数点之前的
			cout<<".";
			while(num>t-i)//若整数部分为0,小数部分不够填补小数点后的位数0
			{
				cout<<"0";
				num--;
			}
			for(j=i;j<t;j++)
				cout<<a1[j];//输出小数点后的
			cout<<endl;
		}
	}
	return 0;
}



 

转载于:https://www.cnblogs.com/NYNU-ACM/p/4237321.html

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems. This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25. 输入说明 The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9. 输出说明 The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer. 输入样例 95.123 12 0.4321 20 5.1234 15 6.7592 9 98.999 10 1.0100 12 输出样例 548815620517731830194541.899025343415715973535967221869852721 .00000005148554641076956121994511276767154838481760200726351203835429763013462401 43992025569.928573701266488041146654993318703707511666295476720493953024 29448126.764121021618164430206909037173276672 90429072743629540498.107596019456651774561044010001 1.126825030131969720661201 小提示 If you don't know how to determine wheather encounted the end of input: s is a string and n is an integer C++ while(cin>>s>>n) { ... } c while(scanf("%s%d",s,&n)==2) //to see if the scanf read in as many items as you want /*while(scanf(%s%d",s,&n)!=EOF) //this also work */ { ... } 来源 East Central North America 1988 北大OJ平台(代理
``` #include <bits/stdc++.h> using namespace std; using ll = long long; const int MAXN = 105; const ll INF = 1e15; using Matrix = ll[MAXN][MAXN]; int n; int a[MAXN]; ll T; Matrix d, result; Matrix temp1, temp2; // Temporary matrices for computation // Set matrix to identity void setIdentity(Matrix m) { for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) m[i][j] = (i == j) ? 0 : -INF; } // Multiply matrices using max-plus algebra void matrixMultiply(const Matrix A, const Matrix B, Matrix C) { for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) { C[i][j] = -INF; for (int k = 0; k < n; ++k) C[i][j] = max(C[i][j], A[i][k] + B[k][j]); } } // Compute matrix power using binary exponentiation void matrixPower(const Matrix A, ll exponent, Matrix result) { // Copy A to temp1 memcpy(temp1, A, sizeof(Matrix)); // Initialize result to identity setIdentity(result); // Binary exponentiation while (exponent > 0) { if (exponent & 1) { matrixMultiply(result, temp1, temp2); memcpy(result, temp2, sizeof(Matrix)); } matrixMultiply(temp1, temp1, temp2); memcpy(temp1, temp2, sizeof(Matrix)); exponent >>= 1; } } int main() { cin >> n >> T; for (int i = 0; i < n; ++i) cin >> a[i]; // Construct the initial matrix for (int s = 0; s < n; ++s) { for (int i = 0; i < n; ++i) { if (a[i] < a[s]) { d[s][i] = -INF; } else { d[s][i] = 1; for (int j = 0; j < i; ++j) if (a[j] <= a[i]) d[s][i] = max(d[s][i], d[s][j] + 1); } } } // Compute d^T matrixPower(d, T, result); // Find maximum value in the result matrix ll maxVal = -INF; for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) maxVal = max(maxVal, result[i][j]); cout << maxVal << endl; return 0; }```题目描述 现有一个长度为 n×T 的序列 a 1 ​ ,a 2 ​ ,...,a n×T ​ ,满足 a i ​ =a i−n ​ (n<i<=n×T) 。请找出这个序列中的最长不降子序列的长度。 输入格式 输入的第一行有两个空格隔开的整数 n 和 T (1<=n<=100,1<=T<=10 7 ) 。第二行有n 个空格隔开的正整数 a 1 ​ ,a 2 ​ ,...,a n ​ (1<=a i ​ <=300) 描述了这个序列的前 n 项。 输出格式 输出一个整数——最长不降子序列的长度。
最新发布
03-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值