描述:小明到小华家有许多条路可以走,现在给出所有能够到达他家的路线,并给出每条线段的长度,求出小明到小华家的最短路线!
介绍第一种学习方法:dijkstra算法
顶点集分为两组,第一组为:已求出最短路径的顶点集合
第二组为:其余未确定最短路径的顶点集合
按照最短路径长度递增次序把第二组中的顶点依次加入到第一组中
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<climits>
#include<queue>
#include<algorithm>
using namespace std;
#define N 110
#define MAX 999999
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int nodenum, edgenum;
int map[N][N], dis[N];
bool visit[N];
int Dijkstra(int src, int des)
{
int temp, k;
CLR(visit, false);
int i = 1 ;
for(; i <= nodenum; ++i)
dis[i] = (i == src ? 0 : map[src][i]);
visit[src] = true;
dis[src] = 0;
for(i = 1; i<= nodenum; ++i)
{
temp = MAX;
int j = 1 ;
for(; j <= nodenum; ++j)
if(!visit[j] && temp > dis[j])
temp = dis[k = j];
if(temp == MAX)
break;
visit[k] = true;
for(j = 1; j <= nodenum; ++j)
if(!visit[j] && dis[j] > dis[k] + map[k][j])
dis[j] = dis[k] + map[k][j];
}
return dis[des];
}
int main()
{
int start, end, cost;
int answer;
while(~scanf("%d%d", &nodenum, &edgenum) && (nodenum + edgenum))
{
int i = 1 ;
for(; i <= nodenum; ++i)
for(int j = 1; j <= nodenum; ++j)
map[i][j] = MAX;
for(i = 1; i <= edgenum; ++i)
{
scanf("%d%d%d", &start, &end, &cost);
if(cost < map[start][end])
map[start][end] = map[end][start] = cost;
}
answer = Dijkstra(1, nodenum);
printf("%d\n", answer);
}
return 0;
}