
文本
ddtohy
这个作者很懒,什么都没留下…
展开
-
特征选择方法之信息增益
前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法。但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同。开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留。在信息增益中,重要性的衡量标准就是看特征能够为分类系统带来多少信息,带来的转载 2014-09-24 21:12:11 · 1307 阅读 · 0 评论 -
文本向量表示及TFIDF词汇权值
文本相似计算是进行文本聚类的基础,和传统结构化数值数据的聚类方法类似,文本聚类是通过计算文本之间"距离"来表示文本之间的相似度并产生聚类。文本相似度的常用计算方法有余弦定理和Jaccard系数。但是文本数据与普通的数值数据或类属数据不同,文本数据是一种半结构化数据,在进行文本挖掘之前必须要对文本数据源进行处理,如分词、向量化表示等,其目的就是使用量化的数值来表达这些半结构化的文本数据。使其适用于分转载 2014-10-04 10:55:54 · 1453 阅读 · 0 评论