Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)
Solution 1. Recursion without memoization
Similarly with Jump Game, we can use solve this problem recursively with the following formula.
f(n) = min(1 + f(i)) for i satisfies in range [0, n - 1], i + A[i] >= n, f(i) is reachable from A[0];
For f(i) that can't be reached from A[0], it does not update the min.
1 public class Solution { 2 private int min; 3 public int jump(int[] A) { 4 if(A == null || A.length == 0){ 5 return Integer.MAX_VALUE; 6 } 7 min = Integer.MAX_VALUE; 8 helper(A, A.length - 1, 0); 9 return min; 10 } 11 private void helper(int[] A, int idx, int jumps){ 12 if(idx == 0){ 13 min = Math.min(min, jumps); 14 return; 15 } 16 for(int i = 0; i < idx; i++){ 17 if(i + A[i] >= idx){ 18 helper(A, i, jumps + 1); 19 } 20 } 21 } 22 }
Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space
1 public class Solution { 2 private int[] T; 3 public int jump(int[] A) { 4 if(A == null || A.length == 0){ 5 return Integer.MAX_VALUE; 6 } 7 T = new int[A.length]; 8 T[0] = 0; 9 for(int i = 1; i < A.length; i++){ 10 T[i] = Integer.MAX_VALUE; 11 } 12 return helper(A, A.length - 1); 13 } 14 private int helper(int[] A, int idx){ 15 if(T[idx] != Integer.MAX_VALUE){ 16 return T[idx]; 17 } 18 for(int i = 0; i < idx; i++){ 19 if(i + A[i] >= idx){ 20 int ret = helper(A, i); 21 if(ret != Integer.MAX_VALUE){ 22 T[idx] = Math.min(T[idx], ret + 1); 23 break; 24 } 25 } 26 } 27 return T[idx]; 28 } 29 }
Solution 3. Bottom Up Dynamic Programming
1 public class Solution { 2 public int jump(int[] A) { 3 if(A == null || A.length == 0){ 4 return Integer.MAX_VALUE; 5 } 6 int[] steps = new int[A.length]; 7 steps[0] = 0; 8 for (int i = 1; i < A.length; i++) { 9 steps[i] = Integer.MAX_VALUE; 10 } 11 for (int i = 1; i < A.length; i++) { 12 for (int j = 0; j < i; j++) { 13 if (steps[j] != Integer.MAX_VALUE && j + A[j] >= i) { 14 steps[i] = Math.min(steps[i], steps[j] + 1); 15 break; 16 } 17 } 18 } 19 return steps[A.length - 1]; 20 } 21 }
In both solution 2 and 3, the highlighted break statement is actually an optimization upon the dynamic programming solution.
It uses a greedy principle: given an index i and we try to find the min jumps needed to get from index 0 to i. Our search index
is from 0 to i - 1. If we can jump directly from 0 to i with 1 jump, then we should simply stop searching the rest 1 to i - 1. Why?
Say from 1 to i - 1, we find another index j that we can jump from j to i with 1 jump, then we need at least another 1 extra jump
to get from 0 to j, which is obviously less optimal than jumping from 0 to i.
This argument only works if we search from left to right. If we search from right to left, then we can't skip any search.
Solution 4. Greedy Algorithm, O(n) runtime.
Stay tuned...
Related Problems
Frog Jump
最小跳跃次数算法
本文探讨了如何找到非负整数数组中从起始位置到达最后一个元素所需的最少跳跃次数。介绍了四种解决方案:递归、带备忘录的递归、自底向上的动态规划及贪婪算法,并对比了它们的时间复杂度。
321

被折叠的 条评论
为什么被折叠?



