[LintCode] Jump Game

本文探讨了一个经典的算法问题——跳跃游戏。介绍了两种解决方法:贪婪算法和动态规划,并详细阐述了各自的实现过程及时间复杂度。通过具体实例展示了如何判断能否到达数组最后一个位置。

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

This problem have two method which is Greedy and Dynamic Programming.

The time complexity of Greedy method is O(n).

The time complexity of Dynamic Programming method is O(n^2).

We manually set the small data set to allow you pass the test in both ways. This is just to let you learn how to use this problem in dynamic programming ways. If you finish it in dynamic programming ways, you can try greedy method to make it accept again.

Example

A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

 

Solution 1.  Recursion without memoization 

Recursive formula: f(n) =  true if there is at least one i (from 0 to n - 1) that satisfies i + A[i] >= n and f(i) = true.

          f(n) = false if there is no such i.

This solution is not efficient as it does duplicate work to compute the same subproblems over and over.

 1 public class Solution {
 2     public boolean canJump(int[] A) {
 3         if(A == null || A.length == 0){
 4             return false;
 5         }
 6         return helper(A, A.length - 1);
 7     }
 8     private boolean helper(int[] A, int idx){
 9         if(idx == 0){
10             return true;
11         }
12         boolean ret = false;
13         for(int i = 0; i < idx; i++){
14             if(i + A[i] >= idx){
15                 if(helper(A, i)){
16                     return true;
17                 }
18             }
19         }
20         return false;
21     }
22 }

 

Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space 

The natural way of optimizing solution 1 is to avoid duplicated work by using memoization.

 1 public class Solution {
 2     private boolean[] T;
 3     private boolean[] flag;
 4     public boolean canJump(int[] A) {
 5         if(A == null || A.length == 0){
 6             return false;
 7         }
 8         T = new boolean[A.length];
 9         flag = new boolean[A.length];
10         T[0] = true;
11         flag[0] = true;
12         return helper(A, A.length - 1);
13     }
14     private boolean helper(int[] A, int idx){
15         if(flag[idx]){
16             return T[idx];
17         }
18         boolean ret = false;
19         for(int i = 0; i < idx; i++){
20             if(i + A[i] >= idx){
21                 if(helper(A, i)){
22                     T[idx] = true;
23                     flag[idx] = true;
24                     return true;
25                 }
26             }
27         }
28         T[idx] = false;
29         flag[idx] = true;
30         return false;
31     }
32 }

 

Solution 3. Bottom up dynamic programming, O(n^2) runtime, O(n) space.

An equivalent iterative bottom up dp solution is implemented as follows. 

Both solution 2 and 3 can't be optimized further more on extra space usage as calculating a subproblem

possibly requires the results of all smaller subproblems. 

However, runtime can be further optimized to O(n) using Greedy algorithm.

 1 public class Solution {
 2     public boolean canJump(int[] A) {
 3         if(A == null || A.length == 0){
 4             return false;
 5         }
 6         int n = A.length;
 7         boolean f[] = new boolean[n];
 8         f[0] = true;
 9         
10         for(int i = 1; i < n; i++){
11             for(int j = 0; j < i; j++){
12                 if(j + A[j] >= i){
13                     f[i] = f[i] || f[j];                 
14                 }
15             }
16             if(!f[i]){
17                 return false;
18             }
19         }
20         return true;
21     }
22 }

 

Solution 4. Greedy Algorithm, O(n)

Stay tuned...

 

 

Related Problems 

Jump Game II

Frog Jump

转载于:https://www.cnblogs.com/lz87/p/7057585.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值