[LeetCode 322] Coin Change

本文详细解析了硬币找零问题,通过动态规划的方法找到组成特定金额所需的最少硬币数量。介绍了状态转移方程及代码实现,并对比了背包VI和组合总和IV等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

 

BackPack VI and Combination Sum IV:  Find all possible combinations that sum to a target value 

Coin Change: Find the combination that sums to a target value and uses the fewest number of elements

 

State: dp[i]: the fewest number of coins needed that sum to i

Function: dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1), if i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE

i >= coins[j]: only consider picking a coin if its value is not greater than the target value i;

dp[i - coins[j]] < Integer.MAX_VALUE: if we did pick coins[j], then we must be able to find a combination that sums 

to i - coins[j];

Initialization: dp[0] = 0, dp[i] = Integer.MAX_VALUE, for i >= 1

Answer: dp[amount] or -1

 

 1 public class Solution {
 2     public int coinChange(int[] coins, int amount) {
 3         if(amount <= 0){
 4             return 0;
 5         }
 6         if(coins == null || coins.length == 0){
 7             return -1;
 8         }
 9         int[] dp = new int[amount + 1];
10         dp[0] = 0;
11         for(int i = 1; i <= amount; i++){
12             dp[i] = Integer.MAX_VALUE;
13         }
14         for(int i = 1; i <= amount; i++){
15             for(int j = 0; j < coins.length; j++){
16                 if(i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE){
17                     dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
18                 }
19             }
20         }
21         if(dp[amount] < Integer.MAX_VALUE){
22             return dp[amount];
23         }
24         return -1;
25     }
26 }

 

 

Related Problems

BackPack VI

Combination Sum IV

 

转载于:https://www.cnblogs.com/lz87/p/7006859.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值