1.COCO数据集
COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。这就是YOLOV3采用的数据集。
该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。
1.2COCO数据集类别
person(人)
bicycle(自行车) car(汽车) motorbike(摩托车) aeroplane(飞机) bus(公共汽车) train(火车) truck(卡车) boat(船)
traffic light(信号灯) fire hydrant(消防栓) stop sign(停车标志) parking meter(停车计费器) bench(长凳)
bird(鸟) cat(猫) dog(狗) horse(马) sheep(羊) cow(牛) elephant(大使用和下载象) bear(熊) zebra(斑马) giraffe(长颈鹿)
backpack(背包) umbrella(雨伞) handbag(手提包) tie(领带) suitcase(手提箱)
f

本文深入解析COCO数据集,涵盖其丰富的内容,包括91类目标、328,000影像和2,500,000个label。详细介绍了数据集的结构、特点和标注信息,提供了下载方式。
最低0.47元/天 解锁文章
1万+





